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Advances in experimental atomic systems have given us access to highly tunable

quantum systems, and to an unprecedented range of observables of these systems.

One fundamental system that has been made accessible in this way is a gas of

bosons trapped in a periodic potential.

We present here a several studies of the many-body physics of bosons in optical

lattices. We discuss the ferromagnetic effects of a single vacancy in a two-species

gas on a lattice. We present a derivation of the superfluid density, the order param-

eter for the superfluid state, and discuss the mathematical subtleties of calculating

it. Finally, we calculate the dynamics of bosonic lattice systems, in the presence

of inelastic light scattering used as a density measurement, and during a ramp of

the interaction strength from the Mott to the superfluid phase.
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Ĥ
〉
gs

)
at the end of a ram-

pdown of the interaction strength, as a function of the length of
the ramp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.5 Evolution of the effective correlation length ξ in short ramps . . . . 111
7.6 Effective correlation length ξ at the end of a rampdown of interac-

tions, in the presence of decohering inelastic light scattering . . . . 113

xii



CHAPTER 1

INTRODUCTION

Some fields of physics have a patron saint, as Newton is to mechanics and

Einstein to relativity. Others have a mathematical object to represent them, like

elecromagnetism’s Maxwell’s Equations and theoretical particle physics’ Feynman

diagrams. Ultracold atomic physics has a false-color image. Three gaussian peaks,

each successively sharper than the last, in rainbow colors, representing the mo-

mentum distribution of a gas of Sodium atoms as it was cooled down into a Bose

Einstein Condensate [35].

With Ketterle’s experiment, as well as Eric Cornell and Carl Wieman’s parallel

experiment [3] and Hulet’s closely following work [18], atomic physics became an

incredibly productive playground for fundamental quantum mechanics research.

Multiple quantum phenomena could suddenly be observed and controlled directly

in tabletop sized lab setups.

The advantages of ultracold atomic physics come down, in the end, to its scales.

The gases used in atomic experiments have masses 103 − 104 greater than the

electrons of condensed matter. They are diluted until the interatomic distance

is on the order of microns, 104 times larger than the atomic spacing in a typical

metal. And they are neutral, and so near-invisible to the primarily electromagnetic

influence of the outside world. As such, the natural energy scale of these atoms - in

KHz and MHz - is separated by ten orders of magnitude from the energy scales of

the lasers and fields used to control them. Unintended interactions, external effects,

and uncertainty - heating and temperature - can be reduced to unprecedented

levels.
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The same scales work to create atomic physics’ other advantage, in the form

of direct probes of our systems. Both the distances – microns – and time scales –

fractions of seconds - at which our gases operate are nearly within the human range

of perception, and the same separation that allows for a reduction of temperatures,

allows for the use of scattered light to measure the properties of individual particles.

From the aforementioned image, inferring of the momentum distribution of the

particles from their position after flying away from the trap, to current experiments

observing particles in situ [6, 116], we have gained access to an incredible wealth

of information about these quantum systems.

And so we have the ability to set up and control quantum systems with high

precision on the one hand, and to learn a great deal about the results of each

intervention on the other. This is a perfect combination for a theorist, who is left

to explain how we came from point A to point B. Like any physicist who has been

working at it long enough, I have a set of explanations for my work ranging from the

single sentence to the hour-colloquium, which are deployed in a modular fashion

after gauging the listener’s actual level of interest in the subject. My one-sentence

version is, “I play games with quantum mechanics”.

More specifically, my work, and this thesis, have focused on the study of many-

body quantum systems, studying the emergent physics of the coherent interactions

of many subatomic particles. The nature of theoretical research in our field is

broad - there are many questions to be answered, and many questions that can

be answered in a relatively concise fashion. This lends itself to an exciting mode

of research, and has allowed me to work on a diverse range of subjects, using

multiple techniques. It does not make for an entirely coherent dissertation. It is

presented, instead, as a collection of studies of one of the fundamental systems

2



used in ultracold atomic physics, bosonic particles trapped on an optical lattice.

We begin, in Chapter 2, with an introduction to the underlying mathematics

powering all of this work, the Bose Hubbard model. We also discuss the micro-

scopic physics underpinning the model, and how to relate the it to experimental

parameters. This introductory chapter is followed by five previously published

works on the behavior of lattice bosons, divided into three topics.

The first of these, Chapter 3, is concerned with the physics of polarons. In

a lattice with commensurate filling of two species of strongly interacting gas, we

introduce a single impurity, in the form of a missing particle. We explore the

ferromagnetic ordering this impurity induces.

In the following chapters, we discuss a field theoretical approach to calculating

the superfluid density, the order parameter describing the superfluid state of low-

temperature bosons. In Chapter 4 we calculate this order parameter in bosonic

systems of one and two particle species. In making this calculation, we encounter

a mathematical inconsistency brought on by the use of coherent states with the

path integral formalism. In Chapter 5, we introduce and discuss a technique to

correct this inconsistency.

Finally, the last two chapters focus on the dynamics of lattice bosons. In

Chapter 6 we calculate the quantum effects of measurement as it is expressed in

these systems, focusing on the reaction of lattice bosons to local density probes.

Finally, in Chapter 7, we study the behavior of these systems as they undergo a

phase transition between the Mott insulator and superfluid phase.
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CHAPTER 2

THE BOSE HUBBARD MODEL

Much of the study of modern physics is driven by ideas of symmetry, and one

of the defining features of a physical system is the symmetries that govern its

behavior. From this point of view, the physics of condensed matter systems is

driven by discrete translational symmetries associated with lattices [103].

The understanding of crystal systems, defined by such lattices, has evolved hand

in hand with quantum mechanics over the last hundred years. Naturally, much

of the initial focus was on the physics of individual particles, generally electrons,

moving through a periodic system. This dissertation is concerned with the next

step, the physics emerging from the interconnected behavior of many particles.

This research is driven by the experimental breakthroughs in optical and atomic

physics in the last two decades, as discussed in Chapter 1. It remains rooted in the

efforts made in the understanding of condensed matter systems, and makes use of

the breakthroughs of that field.

A crucial step in understanding the physics of periodic systems, as in any other

field, is defining the problem in an accessible, clear way. We make use of the body

of work on condensed matter systems by appropriating one of its most commonly

used tools, the Hubbard model. It is an approach to periodic quantum systems that

seeks to make maximal use of their symmetries, to present this complex problem

in a manageable, transparent Hamiltonian form.

The Hubbard model was first proposed by its eponymous creator in 1963 [70] as

a method of calculating electron correlations in metals. It has since been successful

in predicting many results in condensed matter physics [149] and atomic physics
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[17], for fermions and bosons [23,24,39,46,61,104,138,150]. Though much of what

we present in this chapter is applicable to both Fermi-Hubbard and Bose-Hubbard

systems, as the relevant models are called, our focus is on bosonic systems, and

the results presented in later chapters are unique to those.

2.1 Many Body Physics in a Periodic Potential

In its most general formulation, the Hubbard model is simply a change of basis.

We begin with a periodic potential, and a related set of Ns � 1 lattice vectors

denoted by Ri. We know, from Bloch’s theorem [103], that the eigenfunctions of

a single particle in such a potential can be written as

ψn,k(r) = e−ik·run,k(r), (2.1)

where the functions un,k(r +Ri) = un,k(x) have the same periodicity as the po-

tential, and k is a crystal momentum, defined up to a reciprocal lattice vector.

Thus, we write the non-interacting Hamiltonian as

Ĥ1 = 1
Ns

∑
k

∑
n

εn,kâ
†
n,kân,k (2.2)

where âk,n (â†k,n) are the annihilation (creation) operators for a particle with wave-

function ψn,k(r):

â†n,k =

∫
dr e−ik·run,k(r)ψ̂†r (2.3)

where ψ̂†r is creation operator for a particle at position r.

Next, we set to add an interaction term to the Hamiltonian. As these are

often short-ranged on the scale of the lattice, it is useful to introduce a set of local

creation operators, defining for for any lattice vector Ri

â†n,i =

∫
dr φn(r −Ri)ψ̂

†
r ≡ 1√

Ns

∑
k

eik·Ri â†n,k. (2.4)
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The functions φn(r) used here are known as Wannier functions. They form are a

localized basis for the single-particle wavefunctions.

With the addition of a two-particle interaction operator V̂2, the Hamiltonian

takes on the most general Hubbard form,

Ĥ = −
∑
i,j

Jnj â
†
n,i+j ân,i + 1

2

∑
i,j,
i′,j′

∑
m,n,
m′,n′

Um,n,m′,n′

i′−i,j,j′ â†n′,i+j â
†
m′,i′+j′ âm,i′ ân,i (2.5)

where

Jnj = − 1
Ns

∑
k

εn,ke
−ik·Rj

(2.6)

Um,n,m′,n′

i′−i,j,j′ =

∫
drdr′ 〈r +Ri, r

′ +Ri′ |V̂2|r +Ri, r
′ +Ri′〉×

φ∗n′(r −Rj)φ
∗
m′(r

′ −Rj′)φn(r′)φm(r).

(2.7)

Here |r, r′〉 is a normalized two-particle wavefunction with particles at r and r′.

The basis change of Eq. (2.5) is enlightening in itself, allowing us to view the

problem in terms of the behavior of particles populating the discrete sites of lattice.

As we will see in Section 2.2.2, Eqs. (2.6) and (2.7) allow us to easily transform

microscopic potentials into this discrete Hamiltonian.

However, the real strength of the Hubbard model is in expediting relevant

approximations, which make Eq. (2.5) amenable to analytical treatment. In par-

ticular, Wannier functions of bound states generally have exponentially decaying

tails. Thus the magnitude of the parameters in Eqs. (2.6) and (2.7) generally falls

off exponentially the relevant js.

For short-range interactions such the interatomic potentials that govern atomic

experiments, the interaction strength in Equation (2.7) drops off quickly with the
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distance i− i′, as well. In most experiments, it is only the on-site interaction that

is relevant [75].

Finally, of the single-particle bands in the model, we often consider just one

or a few. In many systems of interest, inter-particle interaction strength is weak

enough that atoms are not scattered into the excited bands and the lowest-energy

band can be considered by itself.

Under those simplifications, the single-band Hubbard model becomes, in an

isotropic lattice,

Ĥ = −J
∑
〈i,j〉

(
â†i âj + â†j âi

)
+
U

2

∑
i

â†i â
†
i âiâi (2.8)

where 〈i, j〉 counts over all nearest-neighbor pairs, and we have marked

J = J1
1 U = U1111

000 . (2.9)

An additional chemical potential term, of the form µN = µ
∑

i â
†
i âi, is often incor-

porated into the Hamiltonian.

In momentum space, the Hamiltonian takes the form

Ĥ = J
∑
k

εkâ
†
kâk +

U

2

1

Ns

∑
p,k,q

â†pâ
†
k+qâp+qâk. (2.10)

where the kinetic energy is given by a sum over the lattice basis vectors ∆,

εk = −2
∑

∆

cos(k ·∆). (2.11)

2.1.1 Phase Diagram

The equilibrium properties of the simplified single-band Hubbard model of Eq. (2.8)

have been studied extensively [23,24,39,46,61,104,138,149,150]. When the hopping

7



parameter dominates, J/U & 1, a lattice gas behaves similarly to a free Bose

gas. At low temperature, the atoms condense into the ground states, leading to

superfluidity, while at high temperatures they behave like a thermal Boltzmann

gas. In the weak hopping regime, U � J , a non-compressible Mott insulator state

arises at low temperatures. Figure 2.1 shows the zero-temperature phase diagram

of the single-band Bose Hubbard model.

0.00 0.05 0.10 0.15 0.20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

zJ/U

μ
/U

n 1

n 2

n 3

Mott Insulator

Superfluid

Figure 2.1: The zero-temperature mean-field phase diagram of the Bose Hubbard
model of Eq. (2.8), as a function of the ratio of the hopping parameter to the inter-
action strength zJ/U , and the chemical potential, µ. Here z = 2D is the number
of nearest-neighbors for each site. The shaded area are an incompressible Mott-
insulator state with an integer filling fraction, while the blank space is a superfluid
state with a continuous change in mean occupation. This diagram was obtained
by a Gutzwiller ansatz calculation (see Section 2.6.3). More precise methods of
calculation yield qualitatively similar results but alter the shape of the Mott lobes.
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2.2 Optical Lattices

The interest in the physics of periodic structures comes from our study of metals

and the common crystal form that is found in nature. In atomic systems, periodic

potentials are manufactured to simulate these systems.

The most common method of creating such lattices for neutral atoms are optical

potentials [15]. An neutral atom interacts with an electromagnetic field via a dipole

interaction of the form V = −d ·E. The electromagnetic Hamiltonian for an atom

can be written in the hyperfine basis,

ĤEM =
∑
j,f

εj,f |j, f〉〈j, f |+
∑
k

~ωkĉ†kĉk

− 1

2

∑
j,f,j′,f ′,k

〈j′, f ′|(d · Ek)|j, f〉
(
ĉk + ĉ†k

)
|j′, f ′〉〈j, f |

(2.12)

where |j, f〉 is a hyperfine state, and ĉ†k, ~ωk and Ek the photon creation operator,

energy and field component for the photons with wavector k.

For a monochromatic laser, of energy ~ωL, that is far-detuned, so that[(
ε0j′,f ′ − ε0j,f

)
− ~ωL

]
t � 1 for any pair of hyperfine levels at the relevant time

scales, the eigen-energies of the atom can be expanded perturbatively. We find

εj,f = ε0j,f − Re[Ω]〈j, f |(d · Ek)|j, f〉

− |Ω|2
∑
j′,f ′

(
ε0j′,f ′ − ε0j,f

)(
ε0j′,f ′ − ε0j,f

)2 − (~ωL)2
|〈j′, f ′|(d · Ek)|j, f〉|2

(2.13)

where Ω = 〈ĉk〉 is the intensity of the laser.

It is easy to see that the above becomes, for a standing wave, a periodic po-

tential of the form |Ek|2 ∝ sin2(k · r). The resonant structure allows experiments

to be tuned to a specific virtual transition, while the depth of the lattice is easily

controlled by tuning the intensity of the lasers.
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2.2.1 Atomic interactions and Feshbach Resonances

At the scales relevant to atomic physics, interactions are governed entirely by

the electromagnetic force. Interactions between electrically-neutral atoms, then,

are inherently weak, and governed by higher order effects. At long distances, they

generally take the form of a quickly vanishing V (r) ∝ −1/|r|n, for some n ≥ 2 [117],

most typically n = 6 [77]. At short distances the potential increases exponentially

at what is effectively the atomic radius, V (r) ∝ e−|r|/r0 .

At the length scales we are concerned with, these interactions can be thought

of as contact interactions, and their properties can be understood in terms of

scattering parameters. The majority of relevant atom-atom interactions can be

described by the potential form [15]

V̂2(r) =
4π~2a

m
δ(r)

(
1 + |r| ∂

∂|r|

)
. (2.14)

where a, the scattering length, depends on the atomic structure and the hyperfine

state of the interacting particles. It may also be modified by the use of magnetic

Feshbach resonances. It is often on the order of 1 − 100 times Bohr radius, or

10−10 − 10−8 meters.

2.2.2 Optical Lattices and the Bose Hubbard Model

Having put optical lattices and the scattering potentials of atomic physics in mind,

we will go on immediately do discard them and return to the abstract form of the

Bose-Hubbard model. The remaining step along that path is to translate the

microscopic description of Eqs. (2.13) and (2.14) into the energy parameters of

Eq. (2.8).

10



We begin with the microscopic description of a single atom in an optical lattice.

As we have seen, it can be described by

Ĥ1 =
p̂2

2m
+
∑

α=x,y,z

V α
0 sin2(kLrα) (2.15)

where m is the atomic mass, and kL is the wavenumber of the lattice lasers. To-

gether, define the natural energy scale of the single-particle physics, given by the

recoil energy, ER =
~2k2

L

2m
.

From the single particle description we can obtain the energy bands that de-

fine the hopping term J , shown in Fig. 2.2. These nearly-sinusoidal bands yield

long-range hoping coefficients that decay exponentially with distance, as shown in

Fig. 2.3, justifying the approximations mentioned before. Also seen in Fig. 2.3, the

nearest-neighbor hopping parameter drops exponentially as lattice depth increases.

-1.0 -0.5 0.0 0.5 1.0

0

2
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10

k/kL

ϵ
/E
R

(a) V0 = 4

V0=2ER

V0=6ER

V0=10ER

-1.0 -0.5 0.0 0.5 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

k/kL

ϵ
/E
R

(b) Lowest band

Figure 2.2: The single-particle energy spectrum of a neutral atom in an optical
lattice potential of the form V (x) = V0 sin2(kLx), in one dimension. (a) The
complete bound energy spectrum for the potential at V0 (two lower bands) as well
as the bottom of the free-particle spectrum (upper curve). (b) The lowest energy
band for different values of V0.

Next, we add an interatomic interaction potential, of the form given in

Eq. (2.14). We can calculate the interaction strength parameters of Eq. (2.7),

11
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(b) Long-range hopping

Figure 2.3: The effective hopping parameters of the Hubbard model for the lowest
energy band of a neutral atom in an optical lattice. (a) The nearest neighbor
hopping parameter J = J1

1 . The hopping strength drops exponentially with the
depth of the lattice. (b) The relative strength of longer-range hopping strength
parameters at selected lattice depths. They are suppressed, even at shallow lattice
depths.

finding

Um,n,m′,n′

i′−i,j,j′ = 8πER
a

k2
L

∫
dr φ∗n′(r −Rj)φ

∗
m′(r −Rj′)φn(r)φm(r). (2.16)

The behavior of the on-site interaction parameter is show in Fig. 2.4. As

we increase the lattice depth, the Wannier wavefunctions become more bunched,

and the strength of the interaction increases. This is a slow, sub-linear, increase.

However, the behavior of the Bose-Hubbard model depends only on the ratio U/J .

As seen in Fig. 2.4(b), this parameter can be tuned over several orders of magnitude

by a linear change in the intensity of the trapping lasers.

Figure 2.5 shows the role of interaction terms other than the on-site interac-

tion term for the lowest energy band. As a rule, they are two or more orders of

magnitude smaller than U , as well as much smaller than the energy gap between

the lowest energy and first excited bands.
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Figure 2.4: Effective on-site interaction strength of the Hubbard model for the low-
est energy band of a neutral atom in an optical lattice, as a function of lattice depth.
Lower-dimensional setups are achieved by increasing the lattice depths in the re-
maining dimensions, so that V (x) =

∑D
α=1 V0 sin2(kLrα) +

∑3
α=D+1 V⊥ sin2(kLrα).

Here we use V⊥ = 30ER, so that the transverse hopping parameters is two orders
of magnitude smaller than the active directions. (a) On-site interaction strengths
in units of the recoil energy. The absolute strength of the interaction rises slowly
with lattice depth, as the particle’s wavefunction becomes narrower. (b) The ratio
of the interaction and hopping parameter, U/J , determines the transition between
Mott insulator and superfluid (see Section 2.1.1). It rises exponentially as the
hopping parameter drops. The parameter kLa, the ratio of the scattering length
to the lattice parameter, is about kLa0 ≈ 0.04 for 87Rb atoms in a red laser trap,
and of similar magnitude in other experimental setups.

2.3 Disorder Effects in Optical Lattices

The fundamental assumption in the analysis of lattice systems is periodicity, or

discrete translational invariance. In particular, it allows for the use of Bloch’s

theorem, which stood at the foundation of the simplified Hubbard model intro-

duced above. The overall periodic symmetry of the system is the source of many

of its interesting qualities. In particular, it is essential to superfluidity in its vari-

ous manifestations. In this chapter, we turn our attention to the breaking of this

symmetry, by the introduction of disorder.

The addition of disorder is interesting for many reasons. The most apparent is
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Figure 2.5: Secondary Hubbard model interaction terms for a neutral atom in
an optical lattice, including (a),(b) long range interaction and (c),(d) inter-band
scattering . (a) Off site scattering terms, U1111

00j . (b) Inter-site interaction terms,
U1111
i00 . All off-site terms are suppressed, even at shallow lattice depths. (c) The

interband scattering term, U2211
000 , compared with the on-site interaction strength.

(b) The interband scattering term relative to the band gap, ∆J = mink[ε2,k] −
maxk[ε1,k]. Even in a shallow lattice, the bands are far detuned from each other.

the existence of disorder in real-life systems, and particularly in condensed matter

systems. In atomic systems, the large energy scales involved make it easy to

construct relatively perfect systems, but in material science and electronic systems

imperfections are unavoidable. If we wish to use atomic systems as quantum

simulators [16], we must learn to simulate disorder, as well.

A related motivation is the new physics that comes with the breaking of sym-

metries. Most famous of those are high-temperature superconductors relying on
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doping by impurities of a Mott insulator [96]. More recently, there has been growing

interest in the physics of many body localization [11,107], where the importance of

disorder is seen not at the single-particle level but in the many-body wavefunction.

2.4 Realizations of Disorder in Optical Lattice Systems

As discussed in Section 2.2, the most common implementation of lattice systems

in atomic physics is the optical lattice. The lattice itself, a standing laser wave,

is entirely uniform, and there is no natural way to dope it. Disorder must be in-

troduced intentionally. The chief techniques used are introduction of a secondary

laser potential, either in the form of a laser speckle [158] or a secondary, incom-

mensurate lattice [36, 41, 132] or the use of a secondary species of atoms at low

density as a source of local potential [50].

Speckle Potentials

The earliest and most direct technique for the production of disorder is the use

of a speckle field, simply a laser passed through a diffusing plate to produce a

random optical field. Much like the beams of the optical lattice, it is kept detuned

from the atomic resonances, and produces an effectively classical potential field.

Often used with a one-dimensional or two-dimensional system, the speckle beam

is aligned perpendicular or at an angle to the system, creating localized disorder.

This technique was used successfully in trapped gases and non-lattice experi-

ments [14,28]. It is more difficult to use in lattice experiments, because the available

speckle beams generally have wavelengths similar to those of lattice lasers, and so
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the variation in potential is on scales as large or larger as a single lattice site. It

is thus difficult to create variation in the strength of the disorder, but the speckle

can be used to create a discrete random potential.

Incommensurate Lattices

An alternative optical route allows for the creation of quasiperiodic, or quasi-

random, potentials. A secondary laser, with a non-rational multiple wavelength, is

shined at a weaker intensity, creating a modulation of the primary optical lattice.

This technique creates a continuously distributed, quasi-randomly varying po-

tential difference along the lattice. It is very useful for smaller lattices, which are

common in atomic experiments. In longer lattices, the periodic structure of this

potential may give rise to other effects.

Trapped Secondary Species

A final method of creating disorder involves the use of particle interaction. As

previously, a secondary, incommensurate, optical lattice is used. However, in this

case, its wavelength is selected to be off-resonant and invisible to the primary

particles used. A second species of particle, generally a second hyperfine state,

feels the effect of the second lattice, but not the first. The secondary lattice is

tuned to the Mott regime, so that the second species is frozen in place for the

duration of the experiment. Via interaction, it then serves as a static, random set

of point potentials.

This technique creates a truly random potential. Its main disadvantage is that

due to the very short range of particle interaction, the energy scale of the associated
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disorder tends to be weaker.

2.5 Treatment within the Hubbard Model

Regardless of their experimental underpinning, we wish to describe effective dis-

order potentials in terms of the parameters Eq. (2.8). In adding disorder, we

transform that uniform Hamiltonian into a local one of the same form,

Ĥ = −
∑
〈i,j〉

Jij

(
â†i âj + â†j âi

)
+
∑
i

(
Ui
2
â†i â
†
i âiâi − µiâ

†
i âi

)
. (2.17)

In analyzing the effects of disorder, the parameters Jij, Ui and µi are usually

described as having some statistical distribution around the mean values J , U , µ.

To understand atomic experiments, we must connect the microscopic poten-

tials, however they are created, to this model. In keeping with our simplifying

assumptions, we neglect excited bound states to write an effective Hamiltonian for

the Ns lowest-energy one-particle states.

2.5.1 Weak Disorder Potential

If the energy of the disorder potential remains small compared with the lattice

depth, we may treat all disorder terms perturbatively. In this case, we continue

to use the set of Wannier functions defined by the underlying lattice, Eq. (2.4) as

our basis.

The effective Hamiltonian terms for a perturbation of the form D(r) are given
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by

Jij − J = −
∫

dr φ∗(r −Ri)D(r)φ(r −Rj) (2.18)

µi = −
∫

dr φ∗(r −Ri)D(r)φ(r −Ri) (2.19)

while Ui = U remains unchanged as our basis functions remain the same.

2.5.2 Strong Disorder Potential

If the scale of D(r) approaches that of the lattice potential, the approximation

above begins to fail. In this case, the states of the system may simply not be cap-

tured by the vector space spanned by the lowest-band Wannier functions. Instead,

we are must define a new set of basis functions.

To find this basis, we first make the simplifying assumption that the disorder

potential is composed of a set of spatially separated impurities,

D(r) =
∑
m

Dm(r) (2.20)

where the summation is over some number of impurities less than Ns but on the

same order. We take each local potential Dm to be centered around some Xm,

and assume it affects only the sites adjacent to it, S
(1)
m = {i s.t. |Ri −Xm| ≤ ∆}.

Examining a particular impurity, we now restrict ourselves to a small

subset of sites adjacent to it. We mark the set of nearest neighbors to

S
(1)
m by S

(2)
m = {i s.t. i /∈ Sm(1);∃j ∈ Sm(1), |Ri −Rj| ≤ ∆}, and their union

Sm = S
(1)
m ∪ S(2)

m . The single-particle Hamiltonian for these sites is given by

Ĥsp
m =

∑
〈i,j〉

i,j∈Sm

Jij

(
â†i âj + â†j âi

)
−
∑
i∈Sm

µiâ
†
i âi. (2.21)
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We obtain the parameters for this Hamiltonian by numerically integrating the

single-particle wavefunction within the space it defines.

We first numerically diagonalize the free-space Hamiltonian,

Ĥ0
m =

p̂2

2m
+
∑

α=x,y,z

V α
0 sin2(kLrα) (2.22)

for the space around the basis vectors included in Sm. We obtain the Wannier

function φ
(0)
m (r). As discussed in Section 2.1, the set of functions φ

(0)
m (r −Ri), for

i ∈ Sm, forms a complete basis for the single-particle wavefunctions in the lowest

energy band of Ĥ0
m. Next, we introduce the impurity, diagonalizing, for the same

space,

ĤD
m =

p̂2

2m
+
∑

α=x,y,z

V α
0 sin2(kLrα) +Dm(r). (2.23)

The 4D lowest-energy wavefunctions of this Hamiltonian span the vector space the

Ψm, defining its lowest energy band. We wish to find a local set of functions φ
(1)
m,i

to span this space.

Next, we make use our assumption on the short-range effects of the impurity

potential. We take the sites in S
(2)
m to be unaffected by the impurity. Therefore

we have φ
(1)
m,i = φ

(0)
i for i ∈ S(2)

m . The remaining subspace,

∆Ψm ≡ Ψm \ span
{
φ

(0)
i s.t. i ∈ S(2)

m

}
(2.24)

has dimensions 2D. We choose a local basis, φ
(1)
m,i, for i ∈ S

(1)
m , by rotating it to

minimizing their overlap,
∑

i,j∈S(1)
m

∫
dr
∣∣∣φ(1)
m,i(r)

∣∣∣2∣∣∣φ(1)
m,j(r)

∣∣∣2.

Therefore we have an effective Hamiltonian

Ĥm,eff =
∑

i,j∈S(2)
m

∣∣∣φ(0)
i

〉
〈φi|âiĤD

m

∣∣∣φ(0)
j

〉〈
φ

(0)
j

∣∣∣
+
∑

i,j∈S(1)
m

∣∣∣φ(1)
i

〉〈
φ

(1)
i

∣∣∣âiĤD
m

∣∣∣φ(1)
j

〉〈
φ

(1)
j

∣∣∣, (2.25)
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where
∣∣∣φ(0)
i

〉
=
∫

dr φ
(0)
m (r −Ri)ψ̂

†
r|vac〉. The parameters of Eq. (2.23) are now

extracted as described in Section 2.2.2. One example of this is seen in Fig. 2.6.
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Figure 2.6: The effect of a localized repulsive gaussian potential at position Xm

on the adjacent parameters of the Hubbard model. They are shown for an ef-
fectively one-dimensional lattice (see Fig. 2.4) with lattice constant ∆, at various

lattice depths. Here the impurity potential, Dm(x) ≈ 1.2ERe
−72(x−Xm)2

, is a good
approximation of a potential created by secondary particle species trapped in an
auxiliary lattice (see Section 2.4). (a) The hopping parameter is suppressed for
hopping through the impurity, but boosted for hopping away from the impurity,
as the wavefunctions have a larger overlap. (b), (c) Similarly, an on-site impu-
rity widens the local Wannier wavefunction, reducing on-site interaction strength,
even as it increases the per-particle energy. An adjacent impurity bunches the
wavefunction away from it, increasing interaction strength.
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2.6 Many-Body Theoretical Methods

Though the simplified form of the Bose Hubbard Hamiltonian of Eq. (2.8) is easy to

understand, its many body eigenstates are still difficult to solve. They are governed

by a competition between the momentum-space form of the hopping term and the

position-space form of the interaction term. Thus the eigenstates of free particles

are simply the momentum-space states, while turning off hopping leaves us with a

series of single sites described by simple number density states.

Theoretical treatment of each phase of the Hubbard model is inspired by these

extreme situations. A perturbative expansion around the pure ground states –

the condensate on the superfluid side or the number state on the Mott insulator

side – gives a good picture of the ground state and low-lying excitations. Another

common technique, which provides some results across the phase boundary, is the

Gutzwiller ansatz. Here we give an overview of each of these methods.

2.6.1 Bogoliubov Superfluid Mean Field Theory

For non-interacting bosons, the Hubbard model is given by

Ĥ = J
∑
k

εkâ
†
kâk. (2.26)

The zero-temperature ground state of this Hamiltonian is

|ψG〉 =
(â†0)

n̄Ns

√
N̄s!
|vac〉, (2.27)

with
〈
â†0â0

〉
= n̄Ns,

〈
â†kâk 6=0

〉
= 0. This wavefunction is described by

â0 =
√
Nsn̄+O

(
1
Ns

)
, âk 6=0 = 0. (2.28)
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Inspired by this state, we add interactions as a perturbation. We demote the

condensate density to a scalar

â0 →
√
Nsn0 =

√
Nsn̄−

∑
k 6=0

âkâk (2.29)

to find for all other momenta

ĤBog =
∑
k

[
J∆εk +

U

2

(
2n̄− 1

Ns

∑
p

â†pâp

)]
â†kâk

+
U

2

∑
k

[
n̄− 1

Ns

∑
p

â†pâp

](
âkâ−k + â†kâ

†
−k

)
+
U

2

∑
p,k

â†pâ
†
−pâkâ−k

U

√
n0

Ns

∑
(p,k)

(
â†pâp−kâk + âkâp−kâ

†
p

)
+
U

2

1

Ns

∑
(p,k,q)

â†pâ
†
k−qâp−qâk,

(2.30)

where ∆εk = εk − ε0 and the summations marked (p, k) have no repeated indices.

We diagonalize the quadratic portion via a Bogoliubov transformation,

âk = cosh θkãk + sinh θkã
†
−k

ãk = cosh θkâk − sinh θkâ
†
−k

(2.31)

with θk = θ−k. This construction maintains canonical commutation relations,

[ãk, ãq] = 0,
[
ãk, ã

†
q

]
= δk,q. (2.32)

Taking the creation operators as a small parameter âk ∼ U/J , the Hamiltonian

is diagonalized by setting

tanh 2θk = − Un0

J∆εk + Un0

. (2.33)

self-consistently with 1
Ns

∑
k sinh2 θk = n̄−n0. The Hamiltonian is then diagonal,

ĤBog = J
∑
k

√
∆εk

(
∆εk +

2Un0

J

)
ã†kãk. (2.34)
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2.6.2 Doublon-Holon Expansion

When the hopping parameter is turned off, the Hubbard model decomposes into

an array of single sites,

Ĥ =
U

2

∑
i

â†i â
†
i âiâi. (2.35)

For an integer particle density n̄, the ground state takes on a parallel form to that

of Eq. (2.27),

|ψG〉 =
∏
i

(â†i)
n̄

√
n̄
|vac〉. (2.36)

As weak hopping is turned on, the wish to allow coherence between neighboring

sites. Expecting the state to remain close to the ground state of Eq. (2.36), we

consider that it will be spanned well by limiting the single-site occupation to ni ∈

{n̄− 1, n̄, n̄+ 1}. The lattice become an array of spin-1 spins. We then think of

the vacuum state as defined by equal occupation n̄ at all sites, while excitations in

the form of “doublons” (occupation n̄+ 1) and “holons” (occupation n̄− 1) - the

names are inspired by the case n̄ = 1 - can form and move on the lattice.

We define the creation operators, by their action on the spinor χi =(
|n̄+ 1〉i |n̄〉i |n̄− 1〉i

)T

d̂†i =


0 1 0

0 0 0

0 0 0

, ĥi =


0 0 0

0 0 0

0 1 0

. (2.37)

Transforming

â†i âj → (n̄+ 1)d̂†i d̂j + n̄ĥiĥ
†
j +
√
n̄(n̄+ 1)

(
d̂†i ĥ

†
j + ĥid̂j

)
(2.38)
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â†i â
†
i âiâi → n̄(n̄− 1) + (2n̄− 1)

(
d̂†i d̂i − ĥ

†
i ĥi

)
+ d̂†i d̂i + ĥ†i ĥi (2.39)

we find

ĤDH =
∑
k

(
U

2
+ J(n̄+ 1)εk

)
d̂†kd̂k +

(
U

2
+ Jn̄εk

)
ĥ†kĥk

+ Jεk
√
n̄(n̄+ 1)

(
d̂kĥ−k + d̂†kĥ

†
−k

)
.

(2.40)

We have used here that the difference between the total number of doublons and

holons,
∑

i

(
d̂†i d̂i − ĥ

†
i ĥi

)
, is fixed.

Though this Hamiltonian is quadratic, it is not trivial to solve. The new exci-

tations are hard-core particles, and d̂k, ĥk are not simple bosonic operators, having

instead the commutation relations[
d̂k, d̂

†
q

]
= δk,q − 2n̂dq−k − n̂hq−k,

[
d̂k, ĥ

†
q

]
= −ν̂†q−k,[

ĥk, ĥ
†
q

]
= δk,q − 2n̂hq−k − n̂dq−k,

[
ĥk, d̂

†
q

]
= −ν̂q−k

(2.41)

with

n̂dk =
1

Ns

∑
p

d̂†p+kd̂p ν̂†k =
1

Ns

∑
p

ĥ†p+kd̂p,

n̂hk =
1

Ns

∑
p

ĥ†p+kĥp ν̂k =
1

Ns

∑
p

d̂†pĥp+k.

(2.42)

However, in the regime where J � U , we expect the number of excitations to

be small. As these operations are proportional to the doublon and holon densities,

they can be neglected, and the quasiparticles can be treated as regular bosons.

The quadratic Hamiltonian of Eq. (2.40) then becomes immediately solvable by

yet another Bogoliubov transformation, taking the form now

d̂k = cosh θkd̃k + sinh θkh̃
†
−k ĥk = cosh θkh̃k + sinh θkd̃

†
−k

d̃k = cosh θkd̂k − sinh θkĥ
†
−k h̃k = cosh θkĥk + sinh θkd̂

†
−k.

(2.43)
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Taking

tanh 2θk = −
2J
√
n̄(n̄+ 1)εk

U + J(2n̄+ 1)εk
, (2.44)

the Hamiltonian takes the diagonal form

ĤDH =
U

2

∑
k

√
1 + 2(2n̄+ 1)Jεk

U
+
(
Jεk
U

)2
(
d̃†kd̃k + h̃†kh̃k

)
+ Jεk

U

(
d̃†kd̃k − h̃

†
kh̃k

)
.

(2.45)

2.6.3 Gutzwiller Ansatz

As seen in Eqs. (2.27) and (2.36), the ground states many-body wave-function

decomposes into a product state on both sides of the phase diagram. It is natural

to propose, then, a product state ansatz to span the whole range. The Gutzwiller

variational wavefunction [62] expands the form of Eq. (2.36) to suggest

|ψG〉 =
∏
i

(∑
n

αn
(â†i)

n

√
n!

)
|vac〉. (2.46)

The factors α are constrained by normalization and by the particle number,∑
n

|αn|2 = 1,
∑
n

n|αn|2 = n̄. (2.47)

Here,

〈
â†i âj

〉
=

∣∣∣∣∣∑
n

√
nαnαn−1

∣∣∣∣∣
2

,
〈
â†i â
†
i âiâi

〉
=
∑
n

n(n− 1)|αn|2 (2.48)

and so the energy is given by

1
Ns

〈
Ĥ
〉

= −2DJ

∣∣∣∣∣∑
n

√
nαnαn−1

∣∣∣∣∣
2

+
U

2

∑
n

n(n− 1)|αn|2. (2.49)

The values of αn can generally be determined numerically, taking a number of

terms around αn̄. An estimate can also be made of the phase transition point. If
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we restrict the ansatz, to three terms returning essentially to the doublon-holon

model, the conditions of Eq. (2.47) eliminate all but one degree of freedom. Finding

|ψG〉 =
∏
i

(√
1− θ2|n̄〉i + θ|n̄+ 1〉i + θ|n̄− 1〉i

)
, (2.50)

we find that the energy is minimized by θ = 0 for

U ≤ Uc = 2D
(

2n̄+ 1 + 2
√
n̄(n̄+ 1)

)
J. (2.51)

A slightly more general, numerical, approach produces similar results, which

can be seen in Fig. 2.1.
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Part I

Displacement
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CHAPTER 3

MAGNETIC POLARONS IN TWO-COMPONENT HARD CORE

BOSONS

In the mid 1960’s, Thouless and Nagaoka studied the two-component Fermi

system on a bipartite lattice with very strong on-site repulsion [105, 151]. They

found that in the presence of a single hole the ground state was a fully polarized

ferromagnet. These and further studies showed that at finite temperatures the

system is not fully polarized: near the hole there is a ferromagnetic “bubble”,

while far away the spins are uncorrelated [4, 66]. On such bipartite lattices, the

statistics are irrelevant for the single-hole problem, and the same physics should be

seen in the bosonic case as in the fermionic system. Thus the bosonic ground state

is the Nagaoka state, and at finite temperature, ferromagnetic correlations are

found near the hole. Here we calculate these correlations in a two-component gas

of hard core lattice bosons. We find that at experimentally relevant temperatures

these correlations are measurable using a quantum gas microscope [6].

This is the simplest example of emergent physics in a strongly correlated sys-

tem. Variants of it are also highly nontrivial: for example the ground state of two

component fermions on a non-bipartite lattice with a single hole is unknown. A

qualitative picture of this ferromagnetism can be developed by imagining a child’s

puzzle where tiles slide on a square grid. One tile is missing. By moving this “hole”

one can rearrange the tiles. Here we have a quantum mechanical version of this

puzzle. The motion of the hole from one location to another involves summing all

possible paths. If the tiles are in a symmetric superposition of all possible arrange-

ments (corresponding to ferromagnetism) then these paths will add constructively,

allowing the hole to move over large distances. This ferromagnetic arrangement
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thereby minimizes the zero-point energy of the hole.

Borrowing the term from how electronic motion couples to lattice distortions,

the elementary excitation consisting of a hole dressed by a ferromagnetic cloud is

referred to as a “polaron”. Other cold-atom polaron problems include the behavior

of a single down-spin atom in a Fermi sea of up-spins [100,120,128,143].

Even far from the strong-coupling hard-core limit studied here the physics of

two-component bosons is quite rich. This physics has been explored in theoretical

works [30, 42, 80, 92, 93], and in cold gas experiments [26, 51]. The components

can be different hyperfine states [51], or different atomic species [26]. In the most

ordered state there will be two independent order parameters, and it costs energy to

twist the phase φ1, φ2, of either condensate. Depending on interaction parameters

one can also find states where only some linear combination of the two phases

has a finite stiffness. For example, with sufficiently strong attraction between the

species there will be a condensate of “pairs” but no single particle condensate [112]:

One then has a stiffness to twisting φ1 + φ2, but not φ1 − φ2. Even more exotic

is the “counter-superfluid” phase formed when the interspecies repulsion becomes

strong: One then has a stiffness to twisting φ1 − φ2. Under these circumstances

trying to drive a current of species 1 to the right creates a current of species 2 to

the left. Identifying the two components as the ±z-component of a pseudospin-1/2

object – the counter-superfluid state corresponds to an x − y ferromagnet. If the

in-species interactions are not sufficiently strong, either of these exotic states can

be preempted by phase separation or collapse. [115] In the single hole limit, the

phase stiffnesses scale as the inverse of the system size.

Here we use a high temperature expansion to calculate the correlations between

spins bordering a single hole in a two-component hard-core Bose system on the
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square lattice. Using the techniques in [6,47,56,72,78,111], these correlations can

be directly measured, giving a signature of this interesting physics.

The temperature scale at which these correlations become significant is of

order the hopping energy t. In physical units, this energy is on the order of

t ∼ kB × (1 nK) for 87Rb atoms trapped by λ = 820 nm lasers [145], but using

lighter atoms such as 7Li would increase the hopping energy energy and corre-

sponding temperature by a factor of ten. Similarly, using a shorter wavelength

lattice would also increase this scale.

Our study assumes hard-core interactions, where double occupancy is forbid-

den. In most experiments, the strength of on-site interactions U is fixed and the

hard-core regime is achieved by increasing the height of the potential barrier be-

tween neighboring sites so that t � U . Corrections to the hard-core results scale

as t/U . Spielman et al. [145] report results with t/U ∼ 0.001.

Another relevant experimental detail is most cold atom systems are confined in

harmonic traps. Local physics, such as the correlations we study, are unaffected by

such confinement, as long as one restricts attention to regions where the polarons

are dilute.

The physics of Nagaoka ferromagnetism is relevant for a number of other cold

atom systems [113,156].
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This chapter is based on previously published work [163].

3.1 Analysis

We model the two-component Bose system via the single band Bose-Hubbard

Hamiltonian

Ĥ = −t
∑
〈i,j〉

∑
σ=↑,↓

(
a†σ,iaσ,j + a†σ,jaσ,i

)
(3.1)

where aσ,i (a†σ,i) is the bosonic annihilation (creation) operator for a particles of

type (“spin”) σ at lattice site i, and 〈i, j〉 are all nearest-neighbor pairs and we

limit ourselves to a two-dimensional square lattice. The single-particle spectrum

has band-width of 8t. We work in the canonical ensemble, with fixed particle

number, and do not need to include a chemical potential.

The Bose-Hubbard model is a good description of the system as long as the

band-spacing Eb is large compared with the other relevant energy scales. We

require t � Eb so that the (single-particle) bands are distinct, while T � Eb is

required so that all bosons are in the lowest band. In addition, we will be analyzing

Eq. (3.1) within a high temperature expansion, requiring that the ratio T/t is not

too small.

For a cold-atoms experiment described by the single-band Hubbard model, the

band spacing varies with microscopic parameters as Eb ∼
√
V0ER, where V0 is the

height of the potential barriers between lattice sites, ER = ~2k2/2m: k = 2π/λ

being the laser wavenumber and m the particle mass. The tunneling t depends

exponentially on V0 and is typically t ∼ 0.1 − 0.01ER for V0 & ER [75]. There is

therefore a separation of scales, allowing t ∼ T � Eb. Deeper lattices accentuate

this separation, at the cost of requiring lower temperatures.
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Strong interactions imply a hard-core constraint

a†σ,ia
†
τ,i = 0, (3.2)

which is valid when the on-site interactions are large compared to t.

We examine the case of a single hole in an infinite system and calculate the

finite temperatures expectation values of an observable operator X̂ by

〈X〉 =
1

Z
Tr X̂e−βĤ ; Z = Tr e−βĤ (3.3)

where β = (kBT )−1 is the inverse temperature; we take kB = 1. The trace is

most readily calculated in a basis given by placing the hole on the site rh, and

specifying the pseudospin σi =↑ / ↓ on all remaining sites i 6= rh. We will look

at the correlations between spins on positions which are fixed relative to rh. For

observables of that form, denoting by ζ a spin state with the hole at the origin, we

have

〈X〉 =
Ns

Z

∑
ζ

X(ζ)〈ζ|e−βĤ |ζ〉 (3.4)

where the factor Ns comes from summation over all Ns possible locations of rh,

and X̂|ζ〉 = X(ζ)|ζ〉.

To perform the calculation we use a high-temperature expansion, e−βĤ =∑∞
n=0

1
n!

(
−βĤ

)n
. Each power of H corresponds to a single “hop” of the hole,

and the moments can be calculated from the sum of all closed paths of length n

(“n− paths”) starting at the origin,

〈ζ|
(
−βĤ

)n
|ζ〉 = (βt)n

∑
p∈n−paths

〈ζ | Pp(ζ)〉. (3.5)

Here Pp(ζ) is the spin permutation that results from moving the hole through the

path p. Any open paths, that do not take the hole back to the origin, do not

32



contribute to the sum, and the expectation value is zero if the path leads to a

non-equivalent spin configuration. This requirement also restricts the sum to even

values of n.

Although the number of closed paths grows exponentially with n, we are able to

exhaustively enumerate them for small n ≤ 2M , and calculate a high temperature

approximant

〈
X̂
〉
≈ Ns

Z

M∑
n=0

(βt)2n

(2n)!

∑
p∈2n−paths

∑
ζ

X(ζ)δ(ζ = Pp(ζ))

Z ≈ Ns

M∑
n=0

(βt)2n

(2n)!

∑
p∈2n−paths

∑
ζ

δ(ζ = Pp(ζ)).

(3.6)

We use M = 6.

Estimating the error of cutting off such series to be on the order of the last

term calculated, the correlation functions for spins around the hole are accurate to

about 10% down to T/t ∼ 0.4 for M = 6. To investigate lower temperatures, one

would need to resort to more sophisticated methods of summing the series, such

as the Monte-Carlo approach of Raghavan and Elser [129]. Lower temperatures

are difficult to achieve experimentally.

3.2 Vacancy-Induced Ferromagnetism

The tendency towards ferromagnetism is apparent in the structure of Eq. (3.6).

Ferromagnetic configurations ζ automatically have P(ζ) = ζ, regardless of the

path p. A further insight is that it is only paths with loops in them that favor

ferromagnetism. Paths p which retrace themselves have P(ζ) = ζ regardless of ζ.
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To measure the polarization around the hole we define

Ŝ8 =
∑

i∈n.n.n

Ŝiz (3.7)

where Siz is the spin operator applied to the site i and the summation is over the

eight nearest-neighbor and next-nearest neighbor sites of the hole. The ground

state of our system possesses a spontaneously broken symmetry. In an infinite

system with an infinitesimal magnetic field along z, Ŝ8 will have a finite expectation

value. This expectation value vanishes as T → ∞ and approaches 4 as T → 0.

If there is no symmetry breaking field, then the spontaneous symmetry breaking

occurs in a random direction. In a typical cold-atoms experiment, every time a new

sample is created, this symmetry-breaking direction will be different. Under those

circumstances, one can model the ensemble measurement by taking expectation

values in zero field. By symmetry, in zero field
〈
Ŝ8

〉
= 0, at all T , but the

temperature dependence of its distribution will be non-trivial. At T → ∞ when

all states are equally likely we expect a binomial distribution around zero. At

T → 0, the distribution is uniform. This may be understood in several ways; in

a quantum mechanical treatment, one would attribute this to the fact that each

projection m of the spin multiplet is equally likely. Classically the z-component

of a uniformly distributed random 3D unit vector is uniformly distributed. These

distributions are shown in Fig. 3.1.

To quantify these distributions, we examine the variance of Ŝ8. We define

Ĉ8 =
3

14

[(
Ŝ8

)2

− 2

]
,

=
3

14

( ∑
i∈n.n.n.

Ŝiz

)2

−
∑

i∈n.n.n.

(
Ŝiz

)2

, (3.8)

which is normalized and offset so that 〈C8〉 goes to unity when the hole is maxi-

mally polarized and to zero when all sites are uncorrelated. Note that individual
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Figure 3.1: The probability distribution of 〈S8〉, the total spin of the bosons around
the hole, at (a) T →∞ and (b) T → 0.

measurements of Ĉ8 can be negative or greater than one.

We have calculated for a range of temperatures 〈C8〉 and the uncertainty

∆C8 =
√〈

C8
2
〉
− 〈C8〉2 and they are shown in Fig. 3.2. In particular, at tem-

peratures corresponding to T/t = 0.4 we predict 〈C8〉 = 0.05 and ∆C8 = 0.62.

This compares with a T →∞ result of 〈C8〉 = 0 and ∆C8 =
√

9/28 ≈ 0.57. Both

the non-zero mean of this quantity and the increase in variance are indicative of

the ferromagnetic correlations present around the hole. About 5000 measurements

would be needed to determine the mean to within 20% of the predicted value. A

given sample will contain multiple holes, so each experimental run can contribute

multiple independent measurements.

3.3 Fixed Magnetization

In a cold atom experiment the number of ↑-spin and ↓-spin atoms are fixed, requir-

ing a slightly different ensemble. This difference only matters when the correlation

length becomes of the same order as the system size. For the temperatures de-

scribed in Fig. 3.2, the correlation length is of order the lattice spacing, and these

subtleties are irrelevant.
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Figure 3.2: (a) 〈C8〉, the measure of polarization around the hole, and (b) ∆C8 =√〈
C8

2
〉
− 〈C8〉2, as a function of the relative temperature T/t. Note that ∆C8

goes to
√

9/28 as T →∞.
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By using exact diagonalization on a small system we can, however, show that at

an order of magnitude lower temperature one must consider these finite size effects.

We consider a system of 5× 3 sites described by the Hamiltonian in Eq. 3.1 with

periodic boundary conditions, 7 ↑-spins, 7 ↓-spins and a single hole. We define a

similar operator to the one used before

Ĉf
8 =

3

14

[(
Ŝ8

)2

− 2− 56C∞2

]
, (3.9)

The constant C∞2 = 〈S1
zS

2
z 〉 is the infinite temperature two-spin correlation caused

by the finite number of spins: C∞2 = 1
4

1
2−Nsites

= − 1
52

for an equal number of ↑ and

↓-spins.

The results are shown in Fig. 3.3. At high temperatures, one sees behavior

indistinguishable from Fig. 3.2, while at low temperatures the expectation value is

suppressed. This suppression can be attributed to the ferromagnetic order param-

eter being forced to lie in the x− y plane.

3.4 Outlook

The problem of how charge and spin degrees of freedom interact with one another

is key to a number of important condensed matter systems, most notably high

temperature superconductors. More importantly, conceptually clean examples of

strongly correlated phenomena, such as the two component Bose system one, are

essential to developing new paradigms for many-body physics.

In a cold gas experiment the quantities 〈S8〉 and 〈C8〉 can be measured by a

variant of the quantum gas microscope technique pioneered by Bakr et al. [6] and

extended to spinor gases by Fukuhara et al [47]. An image is taken of the optical
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Figure 3.3:
〈
Ĉf

8

〉
for a system of 3 × 5 sites with an equal number of ↑ and ↓

particles, as a function of temperature T/t. (solid blue line) Results from exact
diagonalization, (dashed red line) result from high-temperature expansion taken
to the same order as in Fig. 3.2. The two match well to about T/t ∼ 0.4.

lattice, which shows the location of all particles, and their spin projection along

a fixed axis. One would locate an isolated hole in this picture, and add up the

spin projections of its neighbors to produce a single realization of S8 or C8. The

experiment would be repeated many times. A histogram similar to Fig. 3.1 can be

produced for S8. The ensemble average can be compared with our prediction for

the quantum mechanical expectation value 〈C8〉.

While the single-hole problem studied here is already interesting, the many-hole

problem is even more rich. At zero temperature, the system is both superfluid and

ferromagnetic. Kuklov et al. [80,92,93] have used Monte-Carlo methods to explore

the relative strengths of superfluid and magnetic stiffnesses. Although no finite

temperature studies have been done, both orders will disappear as one heats the
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system. It would be interesting to know if magnetism or superfluidity vanish first,

or if the two orders vanish simultaneously [109]. This question could be largely

answered by studying the interaction between two polarons.
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CHAPTER 4

A PATH-INTEGRAL APPROACH TO THE SUPERFLUID

DENSITY OF BOSONS IN OPTICAL LATTICES

4.1 Introduction

Superfluidity is one of the most profound collective manifestations of quantum me-

chanics [94,98]. It is characterized by dissipation-less flow and is analogous to the

vanishing resistivity seen in superconductors. The phenomenology of superfluid-

ity is largely contained in Landau’s two fluid model: one component, the normal

fluid, responds to the motion of the container walls, while the other component,

the superfluid, does not. The total density ρ = ρn + ρs is the sum of the density

of each component. Leggett showed that at zero temperature, in a translationally

invariant system, either ρs = 0 or ρn = 0 [97]. In a lattice, however, even at

T = 0, ρs/ρn can be finite. Here we calculate the superfluid fraction for an inter-

acting Bose lattice gas in the large filling limit. Our study complements continuum

calculations of superfluid densities [32, 42,99,127].

We are largely motivated by experiments of cold bosonic atoms in optical lat-

tices [59]. These systems are well described by the Bose-Hubbard model described

in Chapter 2 , which can be studied using mean field theories [138] and Quan-

tum Monte Carlo methods [91,157]. Further motivated by experiments where two

bosonic species are trapped on a lattice [26,51,142], we also calculate the superfluid

density of a two-component system. Such mixtures have rich behavior, including

exotic phases such as paired superflow and counter-superflow [80,93].

To calculate the superfluid fraction we use a functional integral approach, in-
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cluding quadratic fluctuations about a coherent state which makes the action sta-

tionary. This method becomes exact in the weakly-interacting, low-temperature,

high-density limit. We give finite temperature results and compare with exact

numerical diagonalization on small systems.

Our calculation involves coherent state path integrals. As was previously estab-

lished [159] there are difficulties with the continuous time limit of these objects. In

the process of calculating the behavior of lattice bosons, we developed a formalism

correcting these difficulties. We discuss the technical terms of this formalism in

Chapter 5.

This chapter is structured as follows. In Section 4.2 we introduce the physical

meaning and thermodynamic definition of the superfluid density. In Section 4.3

we present the results of the calculation in the case of a single species of bosons on

a lattice, and in Section 4.4 we explore the superfluid properties of two-component

bosons. Section 4.5 demonstrates the technical details of calculating thermody-

namic quantities in this formalism.

This chapter is based on previously published material [160].

4.2 Superfluid Density

To define the superfluid density ρs we follow [98] and introduce a new thermody-

namic variable vs via a thought experiment. We imagine a fluid at rest within

an infinitely long cylinder that is itself at rest. This defines the lab frame. We

now give the cylinder an infinitesimal velocity −vs along its axis. After we have

allowed the container and fluid to reach equilibrium, the mass current as observed
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in the cylinder frame of reference is

j = ρsvs, (4.1)

which defines ρs, the superfluid density. A normal fluid will move as a rigid body

with the container and so have ρs = 0; an entirely superfluid liquid will feel no

drag and remain at rest in the lab frame, yielding ρs = ρ. It is also convenient to

define the remaining fraction of the particles as the normal density,

ρ = ρs + ρn. (4.2)

Formally, we may calculate the superfluid density as the second derivative of

the free energy density F with respect to vs,

ρs =
∂2F
∂v2

s

∣∣∣∣
vs=0

. (4.3)

In a more technical language, this indicates that the superfluid density is the

low-frequency, long wavelength limit of a transverse current-current correlation

function [12].

In a translationally invariant system, for a fluid with well-defined quasiparticles,

one can express Eq. (4.3) as a sum over the excitation spectrum, [117]

ρn =

∫
d3p

(2π~)3

(
p · vs
|vs|

)2(
−∂nb
∂εp

)
vs=0

(4.4)

where nb =
[
eβEk − 1

]−1
is the Bose-Einstein distribution function and εp is the

energy of an excitation of momentum p.

In three dimensions, the microscopic understanding of superfluidity involves

condensation into a single macroscopically-occupied quantum state. If the wave-

function of that condensed state is given by ψ(r, t) =
√
ρc(r, t)e

iχ(r,t), then the
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superfluid velocity vs is directly related to the phase χ,

vs =
~
m
∇χ(r, t). (4.5)

The variable ρc defines the condensate fraction, ρc/ρ, the portion of the system

that is condensed into the ground state. This fraction is not, in general, equal to

the superfluid fraction ρs/ρ.

4.2.1 Experimental probes of ρs

To measure ρs in a gas of cold atoms we propose the following experiment. One

begins with an equilibrated Bose gas in an optical lattice, confined by an additional

harmonic trap. The dimensionality can be controlled by adjusting the intensity of

the lattice beams in the relevant directions. The harmonic trap is then turned off,

and the lattice accelerated to velocity vs by chirping the frequency of one of the

lattice beams. One then turns off the lattice and uses time-of-flight expansion to

measure the momentum p of the cloud. In the limit that all steps are adiabatic,

the mass contained in the normal component is p/vs. Converting this to a density

or a superfluid fraction is trivial.

Gadway et al [50] have implemented a related protocol, but did not emphasize

the fact that they were measuring the superfluid density. Alternate theoretical pro-

posals involve rotation or artificial gauge fields. Ho and Zhou [67] showed that the

superfluid density can be extracted from images of rotating clouds. John, Hadz-

ibabic and Cooper [76] identified a global spectroscopic measure of superfluidity,

while Carusotto and Castin [25] investigated a local probe.
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4.3 The Superfluid Density in a Single Species

4.3.1 Model

We begin by analyzing the case of a single species of weakly-interacting bosons on

an optical lattice. We begin with the single-band Bose-Hubbard Hamiltonian of

Chapter 2, defined by the Hamiltonian of Eq. (2.8),

Ĥ = −J
∑
〈i,j〉

(
â†i âj + â†j âi

)
+
U

2

∑
i

â†i â
†
i âiâi − µ

∑
i

â†i âi. (4.6)

As we are dealing with thermodynamic calculations, we have incorporated a chemi-

cal potential, µ. In this paper we focus on the case of a cubic D-dimensional lattice,

taking the lattice spacing to be a0 and the volume to be V = Nsa
D
0 .

The Bose Hubbard model is a good description of the atomic system as long as

the band spacing Eb is greater than all relevant energy scales in the system, Eb �

J, U, T . Under these conditions, excitation into higher bands can be neglected. In

cold atom experiments this spacing scales as Eb ≈
√

4V0ER where ER = ~2k2

2m
is the

recoil energy for particles of mass m trapped by lasers of wavenumber k = 2π/λ,

and V0 is the optical lattice depth, which is typically of order V0 ∼ 10− 100×ER.

For near-optical lasers and particles lighter than m . 100 amu the single band

approximation works up to T . 10−6K [75].

We introduce the velocity vs into our model by applying a phase twist ∆Θ to

the hopping term,

â
†

i âj → e−i∆Θ·(Ri−Rj)/a0 â
†

i âj (4.7)

or equivalently, âj → ei∆Θ·Rj/a0 âj, where Ri is the position of lattice site i. This
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phase is related to the lattice velocity by

vs =
~
ma0

∆Θ (4.8)

and so we obtain the relation

ρ∆∆′

s =
m2a2

0

~2

[
∂2F

∂∆Θ∆∂∆Θ∆′

]
∆Θ=0

(4.9)

where ∆,∆′ = 1, . . . , D = x, y, z are the lattice directions. In principle, the su-

perfluid density on a lattice may be a symmetric rank 2 tensor, but for the cubic

lattice one has ρ∆∆′
s = δ∆,∆′ρs.

Like all thermodynamic quantities, the free energy density can be derived from

the partition function,

F = − 1

V

1

β
lnZ, (4.10)

given by

Z = Tr e−βĤ =
∑
|ψ〉

〈ψ|e−βĤ |ψ〉 (4.11)

where β = 1/T is the inverse temperature and the sum is over a complete set

of states |ψ〉. Introducing the overcomplete coherent state basis, âi|ρi, ϕi〉 =

√
ρie

iϕi |ρi, ϕi〉, we break up the operator e−βĤ into Nt slices and express the parti-

tion function as a path integral of the Euclidean action over the classical fields [1],

Z =

∮
DρDϕ exp[−SE]. (4.12)

As discussed in Chapter 5, the overcomplete basis necessitates the use of the

discrete time formulation of the action,

SE =
Nt−1∑
t=0

LtE (4.13)
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with

LtE =
∑
i

[
− log[〈ρi,t, ϕi,t | ρi,t+1, ϕi,t+1〉] +

β

Nt

〈ρi,t, ϕi,t|Ĥ|ρi,t+1, ϕi,t+1〉
〈ρi,t, ϕi,t | ρi,t+1, ϕi,t+1〉

]

=
∑
i

[
ρi,t + ρi,t+1

2
−√ρi,tρi,t+1e

i(ϕi,t+1−ϕi,t)
]

− J∆t
∑
〈i,j〉

[√
ρi,tρj,t+1e

i(ϕj,t+1−ϕi,t−∆Θji) +
√
ρj,tρi,t+1e

i(ϕi,t+1−ϕj,t−∆Θij)
]

+
U∆t

2

∑
i

ρi,τρi,τ+1e
2i(ϕi,τ+1−ϕi,τ ) − µ∆t

∑
i

√
ρi,τρi,τ+1e

i(ϕi,τ+1−ϕi,τ )

(4.14)

where ∆Θij = ∆Θ · (Ri −Rj)/a0 and ∆t = β/Nt is the discrete time step. We

take the number of time steps to be large, Nt →∞.

4.3.2 Saddle-point Approximation

We expand the fields ρi, ϕi around the mean density ρ̄ and mean phase twist

∆Φ =
∑

∆ ∆Φ∆∆, with ∆ the set of cubic lattice vectors. For any site i and its

nearest neighbors along ∆, i+∆ and i−∆, we have

ρi,t = ρ̄+ δρi,t

ϕi,t =
1

a0

Ri ·∆Φ + φi,t

ϕi+∆,t − ϕi,t = ∆Φ∆ + φi+∆,t − φi,t

ϕi,t − ϕi−∆,t = ∆Φ∆ + φi,t − φi−∆,t.

(4.15)

We take these perturbations to be small, δρi,t � ρ̄,
∣∣φi±∆,t − φi,t

∣∣ � 1,

|φi,t+1 − φi,t| � 1. The validity of these assumptions is examined below, in

Section 4.3.5. In particular, when T, U . ρ̄J one finds
〈
δρ2

i,t

〉
∼ ρ and〈

(φx+1 − φx)2〉 . 1/ρ̄. Thus if ρ̄� 1 this expansion is well behaved.

Although we assume
(
φi±∆,t − φi,t

)
and (φi,t+1 − φi,t) are small, we make no
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assumption that φi,t itself is small. Consequently our calculation is valid even in

low dimensions, where the condensate fraction vanishes and there is no long range

order.

Equation (4.14) expanded around the mean values reads

LtE =
∑
i

L0 + Li,t1 + Li,t2 + Li,tint, (4.16)

where each subsequent term involves higher powers of the fluctuations.

The first term is a constant,

L0 =

[
−
∑

∆ 2ρ̄J cos(∆Φ∆ −∆Θ∆) + U
2
ρ̄2 − µρ̄

]
∆t. (4.17)

Keeping only this term gives the mean-field Gross-Pitaevskii approximation where

ρs = ρ̄ = ρ.

The second term, linear in the perturbation, is

Li,t1 =

[
−2J

∑
∆ cos(∆Φ∆ −∆Θ∆) + Uρ̄− µ

]
∆tδρi,t. (4.18)

The saddle-point mean values minimizing L0 are

∆Φ = ∆Θ

ρ̄ =
1

U

(
µ+ 2J

∑
∆

cos(∆Φ∆)

)
.

(4.19)

Setting ρ̄ to this value makes L1 vanish. Such a structure is generic, as mini-

mizing the zeroth-order action causes the first order action to vanish. To cal-

culate the superfluid density, we take ∆Θ = 0 but keep ∆Φ finite, giving the

bosons velocity ~
ma0

∆Φ relative to the lattice. The superfluid density becomes

ρs =
m2a2

0

~2

[
∂2F
∂∆Φ2

d

]
∆Φ=0

.
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The “interaction” term, which we neglect in our calculations, consists of terms

of third order or higher in the perturbation fields,

Liint/ρ̄ = O(δρ/ρ̄, φj − φi)3 = O
(
1/
√
ρ̄
)3
. (4.20)

Our non-trivial results come from the the quadratic term, which is best ex-

pressed in momentum space,

SE =
∑
n

∫
aD

0 dDk

(2π)D

[
V

a0
D
L0 + Lk,ωn

2 + Lk,ωn
int

]
(4.21)

where summation is over n = −Nt−1
2

. . . Nt−1
2

with frequencies given by ωn = 2π
β
n,

and the integration is over the first Brillouin zone |kd| ≤ π/a0.

Section 4.5 provides details on the explicit form of Lk,ω
2 and the calculation

of propagators. However, all significant physical results rely only on the behavior

of the propagators and action at two regimes: ω∆t � 1 (superscript p for pole

behavior) and ω∆t = πeiχ (superscript ◦ for contour behavior). These are given,

at ∆Φ = 0, by

〈δρδρ〉pk,ω =
V

aD0
ρ̄

[
1

∆t

2E1k

ω2 + Ek2 +O(∆t)0

]
,

〈δρφ〉pk,ω =
V

aD0

[
− 1

∆t

ω

ω2 + Ek2 +O(∆t)0

]
,

〈φφ〉pk,ω =
V

aD0

1

4ρ̄

[
1

∆t

2E2k

ω2 + Ek2 +O(∆t)0

]
,

(4.22)

〈δρδρ〉◦k,ω =
V

aD0
ρ̄

[
1 +

E1k∆t

1− cos(πeiχ)
+O(∆t)2

]
,

〈δρφ〉◦k,ω =
V

aD0

[
−1

2

sin(πeiχ)

1− cos(πeiχ)
+O(∆t)2

]
,

〈φφ〉◦k,ω =
V

aD0

1

4ρ̄

[
1 +

E2k∆t

1− cos(πeiχ)
+O(∆t)2

]
,

(4.23)

where we use the notation 〈XY 〉k,ω = 〈Xk,ωY−k,−ω〉 and on the right it is under-
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stood ω = π
∆t
eiχ. The energies appearing in these expressions are

E1k = 4J
∑

∆

sin2(k ·∆/2), E2k = 2ρ̄U +

(
4J
∑

∆

sin2(k ·∆/2)

)
,

Ek2 =

[
4J
∑

∆

sin2(k ·∆/2)

][
2ρ̄U +

(
4J
∑

∆

sin2(k ·∆/2)

)]
.

(4.24)

In the continuum limit, one has E1k → ~2k2

2m
and E2k → ~2k2

2m
+ 2gρ, where g =

UaD0 /m, ρ = mn̄/aD0 . The excitation spectrum Ek then corresponds to the familiar

Bogoliubov result. These is the same spectrum of the Bogoliubov expansion of

Section 2.6.1.

4.3.3 Calculation of the Superfluid Density

The superfluid density is given by

ρs =
m2a2

0

~2

(
− 1

βV

)[
∂2 lnZ

∂∆Φ2
x

]
∆Φ=0

. (4.25)

As mentioned above, it is generally a tensor, but reduces to a scalar for a cubic

lattice. One may equally take the derivative in another direction of ∆Φ.

Some insight may be gained by inserting the path integral expressions for the

free energy density and the partition function into this equation. We find that the

superfluid density, to order O(1/ρ̄)0, can be decomposed into three terms,

ρs =
2ma2

0J

~2

m

aD0

[
n0 − nUn − nρφn

]
. (4.26)

The first term is identified below as the total density, from which two normal-

density terms are subtracted.

The densities defined by Eq. (4.26) are

2J

aD0
n0 = − 1

βV

NtV

aD0

〈
∂2L0

∂∆Φ2
x

∣∣∣∣
ρ̄

〉
− 1

βV

∑
n

∫
aD

0 dDk

(2π)D

∂2ρ̄

∂∆Φ2
x

〈
∂Lk,ωn

2

∂ρ̄

∣∣∣∣∣
∆Φ

〉
, (4.27)
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2J

aD0
nUn =

1

βV

∑
n

∫
aD

0 dDk

(2π)D

〈
∂2Lk,ωn

2

∂∆Φ2
x

∣∣∣∣∣
ρ̄

〉
, (4.28)

2J

aD0
nρφn =

1

βV

∑
m,n

∫
aD

0 dDk

(2π)D

aD
0 dDq

(2π)D

[〈
∂Lk,ωn2

∂∆Φx

∣∣∣
ρ̄

∂Lq,ωm2

∂∆Φx

∣∣∣
ρ̄

〉
−
〈

∂Lk,ωn2

∂∆Φx

∣∣∣
ρ̄

〉〈
∂Lq,ωm2

∂∆Φx

∣∣∣
ρ̄

〉]
.

(4.29)

Here, 〈X〉 = 1
Z

∮
DρDϕX exp[SE] is a thermodynamic average; on the right-hand

side of the equations, derivatives in ∆Φx and ρ̄ are to be taken at a constant ρ̄ and

∆Φ, respectively, and then evaluated at ∆Φ = 0; and we have omitted multiple

vanishing terms. This is similar to the calculation shown explicitly in Section 4.5.

Using Eq. (4.27) in combination with Eqs. (4.17) and (4.19) we find n0 = −∂F
∂µ

,

the total average occupation number. Explicitly,

n0 = ρ̄+
1

2

∫
a0

DdDk

(2π)D

(
1− E1k

Ek
coth(βEk/2)

)
. (4.30)

At T = 0, one finds n0 → (µ+ 2DJ)/U as U/J → 0, and n0 → µ/U + 1
2

as

U/J → ∞. These correspond to the correct occupation numbers in the non-

interacting and the no-hopping regimes. The explicit calculation of this term is

given in Section 4.5. The chemical potential µ may be set to given the occupation

number µ̄.

The term nρφn is given by

nδρφn =

∫
a0

DdDk

(2π)D
2J sin2(kxa0/2)

(
−∂nb
∂Ek

)
∆Φ=0

. (4.31)

This expression is reminiscent of the form of the normal density in the continuum

case, given in Eq. (4.4), and it likewise vanishes at T = 0.
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The additional term, nUn , can be understood to come from density-density and

phase-phase correlations created by the interaction term in the hamiltonian.

nUn =

∫
a0

DdDk

(2π)D
sin2(kxa0/2)

[
(E1k + E2k)

2Ek
coth(βEk/2)− 1

]
. (4.32)

At T = 0, U = 0, this term vanishes and the superfluid fraction becomes one; at

non-zero values of U this term is finite even at T = 0.

The resulting superfluid fraction, ρs/ρ, is plotted in Fig. 4.1 at zero tempera-

ture as a function of U/J and in Fig. 4.2 for set values of U/J as a function of

temperature. In Fig. 4.3 we show the curve U(T ) where ρs vanishes, suggesting a

phase transition.

The limits of validity of these results will be discussed in Section 4.3.5.
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Figure 4.1: The superfluid fraction ρs/ρ as function of U/J in an infinite 3D cubic
lattice, for n̄ = 10 (solid red line) and n̄ = 1 (dashed blue line), calculated to
leading order in a 1/n̄ expansion. As discussed in the text, the results are not
expected to be quantitatively accurate above U/J & n̄.
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Figure 4.2: The superfluid fraction ρs/ρ as function of T/J in an infinite 3D cubic
lattice, for n̄ = 10, at U/J = 0.01 (dotted blue line), U/J = 1 (dashed red line)
and U/J = 100 (solid yellow line). At U = 0, ρs vanishes at T/J = 41.5, the ideal
gas transition temperature. As discussed in the text, the results are not expected
to be quantitatively accurate at T/

√
J(J + ρ̄U) & 〈n〉.
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Figure 4.3: The values of U/J, T/J at the intercept ρs = 0, suggesting a superfluid-
Mott insulator transition. The calculation is performed for an infinite 3D cubic
lattice, with n̄ = 10. The inset shows the form of the curve at small T/J . As
discussed in the text, the results are not expected to be quantitatively accurate at
values of U/J & n̄ or T/

√
J(J + ρ̄U) & n̄, but the form is qualitatively similar to

curves generated by quantum Monte Carlo methods [23].
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4.3.4 Analytical Limits

Here we examine the behavior of Eq. (4.26) in several limiting cases.

First we compare our result to the continuum limit by taking a0 → 0, J →∞ so

that Ja2
0 is constant. In this case, the second term Eq. (4.32) vanishes. This can be

seen by separately considering the contributions from k ∼ 1/a0 and k � 1/a0; in

both cases the integrand vanishes. The first part of the normal density, Eq. (4.31),

has contribution only from finite momenta, and becomes

m

aD0
nδρφn → 2mJa2

0

∫
dDk

(2π)D
k2
d

(
−∂nb
∂Eck

)
∆Φ=0

, (4.33)

with Eck the continuum spectrum. Identifying 2mJa2
0/~2 → 1, this is precisely the

known continuum result seen in Eq. (4.4).

Another important limit is zero temperature and large ρ̄. If U ∼ J , then

ρ̄U � J and to first order Ek ≈
√

8UJρ̄
(∑

∆ sin2(k ·∆/2)
)
, E1k + E2k ≈ 2ρ̄U and

the normal density becomes

nUn ≈
∫

a0
DdDk

(2π)D
sin2(kxa0/2)

(ρ̄U)

Ek
− 1 ≈ ρ̄

[√
1

fD

U

Jρ̄

]
− 1

2
(4.34)

where

1√
fD

=

∫
dDθ

(2π)D

sin2(θx/2)√
8
(∑

∆ sin2(θ∆/2)
) (4.35)

has fD ≈ 20, 35, 51 in one, two and three dimensions respectively. This expression

is suggestive of a phase transition from superfluid to Mott insulator at a critical

U = Uc ∼ fDρ̄J . In two and three dimensions, the values for fD are about double

the mean-field result of Uc ∼ 2D × 4
(
n̄+ 1

2

)
[154]. More comparisons along these

lines are made in Section 4.3.6. As discussed in Section 4.3.5, these estimates are

beyond the range of U/J where our approximations are quantitatively valid. It is

nonetheless appealing to see the Mott transition appearing within this formalism.
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Finally we consider the free particle case, U = 0. There, a function of T ,

nn = nUn + nρφn =∫
a0

DdDk

(2π)D

1

2
(coth(βEk/2)− 1)

+

∫
a0

DdDk

(2π)D

1

2

[
cos(kxa0)(1− coth(βEk/2)) + βJ sin2(kxa0)

sinh2(βEk/2)

]
.

(4.36)

The integrand in the first line 1
2
(coth(βEk/2)− 1) = nb(Ek) and the one in the

second is a total derivative that vanishes at kxa0 = 0, 2π, and so nn = nex, the

total occupation of excited states. ρs vanishes at n̄ = nex, corresponding to the

ideal gas transition temperature.

4.3.5 Realm of Validity

Though the formulation of the action in Eq. (4.14), Eq. (4.21) is exact, our cal-

culations are performed by neglecting the infinite series of terms in Lk,ω
int . We can

place bounds on the realms of validity of this approximation by requiring that the

perturbations from the mean values ρ̄, ∆Φ be small,

〈δρi,tδρi,t〉 . ρ̄2〈(
φi+d,t − φi,t

)2
〉
. 1〈

(φi,t+1 − φi,t)2〉 . 1.

(4.37)

We do not require the phases themselves to be small, only the deviation from one

site to another and from one time step to another.

These fluctuations can be calculated by the use of the propagators in Eq. (4.22),

〈
(φi,t+1 − φi,t)2〉 =

1

2ρ̄
, (4.38)
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〈(
φi+d,t − φi,t

)2
〉

=
1

4ρ̄

[
2 +

∫
aD

0 dDk

(2π)D

Ek
J

coth(βEk/2)

]
, (4.39)

〈δρiδρi〉
ρ̄2

=
1

ρ̄

[
1 +

∫
aD

0 dDk

(2π)D

E1k

Ek
coth(βEk/2)

]
. (4.40)

Examination of the integrals in the latter two inequalities implies that to to keep

these parameters small we must have

ρ̄ & 1

U/J . ρ̄

T/J . ρ̄

T/
√
J(J + ρ̄U) . ρ̄,

(4.41)

where the first constraint is universally required, the second stems from the density

fluctuations in Eq. (4.40) and the last two from the phase fluctuations in Eq. (4.39).

4.3.6 Gutzwiller Ansatz

At zero temperature, an alternative approach to calculating the superfluid density

is to use the Gutzwiller ansatz, described in Section 2.6.3 [90]. We use it here as

a point of comparison for our results.

Beginning with the Gutzwiller ansatz of Eq. (2.46), we transform hopping terms

as in Eq. (4.7). The superfluid density is then given by

ρs =
m2a2

0

~2

1

V

[
∂2

∂∆Φ2
x

〈ψG|Ĥ|ψG〉
]
∆Φ=0

=
2ma2

0J

~2

m

aD0

(∑
m

√
m+ 1αm+1αm

)2

.

(4.42)
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We calculated the parameters αm numerically by cutting off the sum at m = 20.

We compare the results with those of Eqs. (4.26) to (4.32), in Fig. 4.4.

0 50 100 150 200
U�J0.0

0.2

0.4

0.6

0.8

1.0
Ρs�Ρ

Figure 4.4: The superfluid fraction ρs/ρ for an infinite three-dimensional cubic
lattice with n̄ = 10, at T = 0. The dashed blue line shows the result of the
Gutziller ansatz calculation and the solid red line shows result as calculated using
Eqs. (4.26) to (4.32).

4.3.7 Numerical Comparison

We also compared the results of Eqs. (4.26) to (4.32) to an exact numerical cal-

culation of the superfluid density for a variety of small lattices in one and two

dimensions. For a finite lattice and fixed number of particles, we can represent the

Hamiltonian in Eq. (2.8) as a finite matrix. We diagonalized this matrix, finding

all eigenstates and eigenvalues. We calculated the superfluid density by performing

the full weighted trace over all eigenstates.

Some comparisons are shown in Fig. 4.5. We find that at zero temperature the

approximate analytic expressions for the superfluid density match the numerical
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result well even at a relatively small number of particles per site, n̄ = 4. More-

over the agreement persists to relatively large U . One such example is shown in

Fig. 4.5(a). The finite temperature values do not agree as well with the numerical

result, except for very large values of n̄, but they follow the same trend as the

numerically calculated results (see Figs. 4.5(b) and 4.5(c)). Overall the numerical

results confirm the limits of validity in Eq. (4.41).

For these comparisons we replaced the integrals in Eqs. (4.30) and (4.32) with

sums, corresponding to the finite size system.

4.4 Two-Component Systems

4.4.1 Model

We apply the same path integral method to a system of two species of bosons on

a lattice. The Hamiltonian for this system is given by

Ĥ = Ĥ↑ + Ĥ↓ + Ĥ↑↓ (4.43)

where Ĥσ for σ =↑, ↓ are the single-particle Hamiltonians for particle species ↑, ↓

respectively, identical to Eq. (4.6) except with constants Jσ, Uσ, µσ and operators

âσi , (â
σ
i )†, n̂σi as appropriate. The final term

Ĥ↑↓ =
∑
i

U↑↓n̂
↑
i n̂
↓
i (4.44)

is the inter-species interaction Hamiltonian.
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(a) T = 0
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(b) U/J = 1
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(c) U/J = 10

Figure 4.5: The superfluid fraction ρs/ρ, for a two-dimensional two-by-two lattice
with 16 particles. The dashed blue line shows the numerically exact result and
the solid red line shows the analytic approximation as calculated using Eqs. (4.26)
to (4.32). (a) At T = 0, for varying interaction strength, (b), (c) as a function of
temperature, for U/J = 1, 10, respectively.
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The action for this Hamiltonian given by

SE =
∑
n

( a0

2π

)D ∫
dDk

[∑
σ

(
V

a0
D σL0 + σLk,ωn

2 + σLk,ωn
int

)]

+ ↑↓Lk,ωn
2 + ↑↓Lk,ωn

int

(4.45)

where σL0,2,int are again identical to those defined in Eqs. (4.17), (4.20) and (4.56),

with mean densities and phase twists ρ̄σ, ∆Φσ
d substituted for the one-component

equivalents as appropriate, and the saddlepoint relation

µσ = Uσρ̄σ + U↑↓ρ̄σ̄ − 2Jσ
∑

∆

cos(∆Φσ
∆) (4.46)

used, with σ̄ indicating the non-σ species, so that ↑̄ =↓, ↓̄ =↑. The additional

terms are

↑↓Lk,ω
2 = 2× 1

2
U↑↓∆t×

(
1+cos(ω∆t)

2

)
δρ↑k,ωδρ

↓
−k,−ω − 2ρ̄↑ρ̄↓(1− cos(ω∆t))φ↑k,ωφ

↓
k,ω

+ sin(ω∆t)ρ̄↓δρ
↑
k,ωφ

↓
−k,ω + sin(ω∆t)ρ̄↑δρ

↓
k,ωφ

↑
−k,ω

, (4.47)

and the higher order terms scale as ↑↓Lωn,kint = ρ̄↑ρ̄↓U↑↓ ×O(1/
√
ρ̄)

3
.

The in-species propagators are now, at ω∆t� 1,

〈δρσδρσ〉pk,ω =
V

aD0
ρ̄σ

[
1

∆t

2Eσ1k

(
ω2 + Eσ̄k2

)(
ω2 + E+k

2
)(
ω2 + E−k2

) +O(∆t)0

]

〈δρσφσ〉pk,ω =
V

aD0

[
− 1

∆t

ω
(
ω2 + Eσ̄k2

)(
ω2 + E+k

2
)(
ω2 + E−k2

) +O(∆t)0

]

〈φσφσ〉pk,ω =
V

aD0

1

4ρ̄

[
1

∆t

2E2k

(
ω2 + Eσ̄k2

)
− 8ρ̄↑ρ̄↓U↑↓

2Eσ̄1k(
ω2 + E+k

2
)(
ω2 + E−k2

) +O(∆t)0

] (4.48)

while the contour pieces are identical to the single-component case. Eσk, Eσ1k, Eσ1k

are the single-particle dispersion relations given in Eq. (4.24), and the new disper-

sion relations are given by

E±k2 =
E↑k2 + E↓k2

2
±

√(
E↑k2 − E↓k2

2

)2

+ 4ρ̄↑ρ̄↓U↑↓
2E↑1kE↓1k. (4.49)
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The interspecies propagators are given by

〈
δρ↑δρ↓

〉p
k,ω

=
V

aD0
U↑↓

[
− 1

∆t

4ρ̄↑ρ̄↓E1↑E1↓(
ω2 + E+

2
)(
ω2 + E−2

) +O(∆t)0

]
,

〈δρσφσ̄〉pk,ω =
V

aD0
U↑↓

[
1

∆t

2ρ̄σE1σω(
ω2 + E+

2
)(
ω2 + E−2

) +O(∆t)0

]
,

〈
φ↑φ↓

〉p
k,ω

=
V

aD0
U↑↓

[
1

∆t

ω2(
ω2 + E+

2
)(
ω2 + E−2

) +O(∆t)0

]
,

(4.50)

〈
δρ↑δρ↓

〉◦
k,ω

=
V

aD0
U↑↓
[
O(∆t)2], 〈δρσφσ̄〉◦k,ω =

V

aD0
U↑↓
[
O(∆t)2],

〈
φ↑φ↓

〉◦
k,ω

=
V

aD0
U↑↓

[
1

2

sin2
(
π
2
eiχ
)
∆t

(1− cos(πeiχ))2 +O(∆t)2

]
.

(4.51)

4.4.2 Calculation of the Superfluid Density

In the presence of two species there are now three superfluid densities,

ρστs =
mσmτa

2
0

~2

[
∂2F

∂∆Φσ
x∂∆Φτ

x

]
∆Φσ=∆Φτ=0

, (4.52)

where ρστs is the superfluid response of species σ to the twisting of the phase of

species τ . The diagonal terms ρσσs are the superfluid densities of species σ, while

the off-diagonal term ρ↑↓s = ρ↓↑s is the cross-stiffness.

The full expressions for all three terms may be calculated in a similar manner

to the single-species case, as described in Section 4.5. At zero temperature, the

superfluid densities are given by

ρσs =
2mσa

2
0Jσ

~2

mσ

aD0

[
n̄σ − nσUn

]
(4.53)

where the number of normal atoms per site is given by

nσUn =

∫
aD

0 dDk

(2π)D
sin2(kxa0/2)

[
(Eσ1k+Eσ2k)(E+kE−k+Eσ̄k2)−4ρ̄↑ρ̄↓U↑↓

2Eσ1k

2E+kE−k(E+k+E−k)
− 1

]
. (4.54)
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The cross-stiffness at T = 0 is

ρ↑↓s =
2
√
m↑m↓a

2
0

√
J↑J↓

~2

√
m↑m↓

aD0
×∫

aD
0 d3k

(2π)3 sin2(kxa0)
4
√
J↑J↓ρ̄↑ρ̄↓U

2
↑↓E1↑E1↓

E+E−(E+ + E−)3 .

(4.55)

While the cross-stiffness is expected to be substantial in hard-core bosons [80]

it is negligible in the weak-interaction case, as illustrated in Fig. 4.6.

A more dramatic effect can be seen in the superfluid densities. At zero temper-

ature, a strong coupling to a second species of particles can replenish the superfluid

fraction, as long as the superfluid has an equal or larger hopping parameter. This

is seen in Fig. 4.7.

-1.0 -0.5 0.5 1.0
U�U¯

0.0001

0.0002

0.0003

0.0004

0.0005

Ρ¯
s�Ρ

Figure 4.6: The superfluid cross-stiffness ρ↑↓s /ρ
↑ as function of the interspecies

interaction U↑↓/U↑ for a two-component Bose gas on an infinite 3D cubic lattice.
Here

〈
n↑
〉

=
〈
n↓
〉

= 10, with U↓ = U↑ = 10J↓ = 10J↑, calculated to leading order
in a 1/〈n〉 expansion.
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Figure 4.7: The superfluid fraction of the one component ρ↑s/ρ
↑ as function of the

interspecies interaction U↑↓/U↑ for a two-component Bose gas on an infinite 3D
cubic lattice. Here

〈
n↑
〉

=
〈
n↓
〉

= 10, U↓ = U↑ = 10J↑, and the second component
has hopping parameter J↓/J↑ = 0.1 (dotted blue line), J↓/J↑ = 1 (dashed red line)
and J↓/J↑ = 10 (solid yellow line).

4.5 Explicit Path Integral Calculations

We provide here a further explicit example of a calculation in the discrete time

step path integral formalism. For a more elementary example see Chapter 5.

Our starting point is Eq. (4.21). Explicitly, the quadratic term is

L2 =
1

2

(
δρk,ω
2
√
ρ̄

√
ρ̄φk,ω

)
G−1
k,ω

 δρ−k,−ω
2
√
ρ̄

√
ρ̄φ−k,−ω

, (4.56)
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where G−1 is an inverse Green’s function matrix,[
G−1
k,ω

]
1,1

= 2(1− cos(ω∆t)) + 2(1 + cos(ω∆t))ρ̄U∆t

+ 4J∆t
∑

∆

(1− cos(k ·∆)) cos(∆Φ∆) cos(ω∆t)

+i sin(k ·∆) sin(∆Φ∆) sin(ω∆t)


[
G−1
k,ω

]
1,2

= −2 sin(ω∆t)(1− ρ̄U∆t)

+ 4J∆t
∑

∆

(1− cos(k ·∆)) cos(∆Φ∆) sin(ω∆t)

−i∆t cos(ω∆t) sin(k ·∆) sin(∆Φ∆)


[
G−1
k,ω

]
2,1

= 2 sin(ω∆t)(1− ρ̄U∆t)

− 4J∆t
∑

∆

(1− cos(k ·∆)) cos(∆Φ∆) sin(ω∆t)

−i sin(k ·∆) sin(∆Φ∆) cos(ω∆t)


[
G−1
k,ω

]
2,1

= 2(1− cos(ω∆t))(1− ρ̄U∆t)

+ 4J∆t
∑

∆

(1− cos(k ·∆)) cos(∆Φ∆) cos(ω∆t)

+i sin(k ·∆) sin(∆Φ∆) sin(ω∆t)



(4.57)

The propagators are obtained by inverting G−1, and are given by

〈δρk,ωδρq,η〉 =
δ(D)(q + k)δω,−η

(a0/2π)D
×[

ρ̄
2(1− cos(ω∆t)) + [(E1k + E2k) cos(ω∆t) + (E1k − E2k)]∆t

2(1− cos(ω∆t))
(
1− 1

2
(E1k + E2k)∆t

)
+ Ek2∆t2

+O(∆Φ)

]

〈δρk,ωφq,η〉 =
δ(D)(q + k)δω,−η

(a0/2π)D
×[

− sin(ω∆t)
1− 1

2
(E1k + E2k)∆t

2(1− cos(ω∆t))
(
1− 1

2
(E1k + E2k)∆t

)
+ Ek2∆t2

+O(∆Φ)

]

〈φk,ωφq,η〉 =
δ(D)(q + k)δω,−η

(a0/2π)D
×[

1

4ρ̄

2(1− cos(ω∆t)) + [(E1k + E2k) cos(ω∆t) + (E2k − E1k)]∆t

2(1− cos(ω∆t))
(
1− 1

2
(E1k + E2k)∆t

)
+ Ek2∆t2

+O(∆Φ)

]
.

(4.58)

As explained below, the only important features of these functions are their
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ω∆t → 0 structures and their values at |ω∆t| = π. We illustrate this result by

calculating the average occupation number via

〈n〉
aD0

= −∂F
∂µ

=
1

βV

1

Z

∂Z

∂µ
=

− 1

βV

( a0

2π

)D ∫
dDk

∑
ωn

[
V

a0
D

〈
∂L0

∂µ

〉
+

〈
∂Lk,ωn

2

∂µ

〉
+

〈
∂Lk,ωn

int

∂µ

〉]
.

(4.59)

As we have assigned ρ̄ = 1
U

(µ+ 2J
∑

∆ cos(∆Φ∆)), the derivatives are given by

∂

∂µ
=

∂

∂µ

∣∣∣∣
ρ̄

+
∂ρ̄

∂µ

∂

∂ρ̄

∣∣∣∣
µ

. (4.60)

We calculate this quantity at ∆Φ = 0.

The saddle point contribution comes from the constant

∂L0

∂µ
= −ρ̄∆t. (4.61)

The contribution from this term to Eq. (4.59) is

− 1

βV

( a0

2π

)D ∫
dDk

∑
ωn

V

a0
D

〈
∂L0

∂µ

〉
=

ρ̄

aD0
. (4.62)

The nontrivial part of the calculation comes from the term involving Lk,ω
2 ,

∂Lk,ωn
2

∂µ
=

1

µ
(1− cos(ω∆t) + E1k∆t cos(ω∆t))

(
ρ̄φk,ωφ−k,−ω −

δρk,ωδρ−k,−ω
4ρ̄

)
+ sin(ω∆t)∆tδρk,ωφ−k,−ω − (1− cos(ω∆t))2∆tρ̄φk,ωφ−k,−ω.

(4.63)

We perform the summation over the frequencies ωn by taking a contour integral.

The same trick is used in the continuous time approach, but the contour here is

slightly different. As illustrated in Fig. 4.8, the integration is performed over a

circle of finite radius 2π
β
Nt−1

2
< |ω| < 2π

β
Nt+1

2
. In terms of the integral over this

contour γ, the summation over frequencies can be expressed as

1

β

∑
ωn

F (ω) =
1

2π

∮
γ

dω
F (ω)

eiβω − 1
− i
∑
ωF

Res

[
F(ω)

eiβω − 1
, ωF

]
. (4.64)
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The sum on the left hand side is over the frequencies ωn = −2π
β
Nt−1

2
. . . 2π

β
Nt−1

2
, the

sum on the right is over the poles ωF of F (ω) inside the contour γ, and γ is the

complex circle defined by |ω| = 2π
β
Nt
2

= π
∆t

. The notation Res(X(ω), ωF) refers to

the residue of X(ω) at ω = ωF .

In a continuous time calculation, one takes the contour γ to infinity. Assuming

F (ω) is well behaved, the integral on the right-hand side of Eq. (4.64) then vanishes.

In our case we must explicitly include this term. To calculate the contour integral,

we take ω = π
∆t
eiχ, with χ = 0 . . . 2π. As ∆t→ 0, the Bose factor is

(
eiπ(β/∆t)eiχ − 1

)−1

→

 −1 0 < χ < π

0 π < χ < 2π
(4.65)

and so the integral of Eq. (4.64) becomes∮
γ

dω
F (ω)

eiβω − 1
= −i π

∆t

∫ π

0

dχ eiχF
( π

∆t
eiχ
)
. (4.66)

In the limit ∆t→ 0, the poles of the functions in Eq. (4.58) converge to finite

values of ω. Hence ωF∆t � 1, and the sum over ωF accesses only information

about the low-energy structure of Eqs. (4.58) and (4.63).

Thus, the summation of functions of the propagators in Eq. (4.58) requires only

the form of their low-frequency poles, at ω∆t � 1 (marked with superscript p)

and their values on the contour γ, at ω = π
∆t
eiχ (marked by superscript ◦). For

our particular case, the summand Eq. (4.63) is composed of〈
∂Lk,ωn

2

∂µ

〉p

=
E1k∆t

µ

(
ρ̄〈φφ〉pk,ω −

〈δρδρ〉pk,ω
4ρ̄

)

+O(∆t)2 × (〈δρδρ〉, 〈δρφ〉, 〈φφ〉),

(4.67)
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Figure 4.8: The contour γ used to perform the summation over ω =
−2π

β
Nt−1

2
. . . 2π

β
Nt−1

2
as in Eq. (4.64). The contour is given by ω = π

∆t
eiχ,

χ = 0 . . . 2π. As one goes to the continuous time case with ∆t → 0, the radius of
the contour goes to infinity.

and〈
∂Lk,ωn

2

∂µ

〉◦
= sin

(
πeiχ

)
∆t〈δρφ〉◦k,ω −

(
1− cos

(
πeiχ

))
2∆tρ̄〈φφ〉◦k,ω

+
1

µ

(
1− cos

(
πeiχ

)
+ E1k∆t cos

(
πeiχ

))(
ρ̄〈φφ〉◦k,ω −

〈δρδρ〉◦k,ω
4ρ̄

)
.

(4.68)

Thus we do not need the full structure given in Eq. (4.58) but rather just the

pole and contour values given in Eq. (4.22).

We now explicitly calculate the contribution of ∂
∂µ
Lk,ωn

2 to 〈n〉. The low-
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frequency behavior is 〈
∂Lk,ωn

2

∂µ

〉p

=
V

aD0

E1k

ω2 + E2
k

(4.69)

with poles at ωF = ±iEk, so that

−i
∑
ωF

Res

[〈
∂Lk,ω

2

∂µ

〉p(
eiβω − 1

)−1
, ωF

]
=

V

aD0

1

2

E1k

Ek
coth(βEk/2), (4.70)

while the contour value is 〈
∂Lk,ωn

2

∂µ

〉◦
= − V

aD0

1

2
∆t

1

2π

∮
γ

dω

〈
∂Lk,ωn

2

∂µ

〉◦(
eiβω − 1

)−1
= −1

2

V

aD0
.

(4.71)

Hence

− 1

βV

( a0

2π

)D ∫
dDk

∑
ωn

〈
∂Lk,ωn

2

∂µ

〉
=

1

2

∫
dDk

(2π)D

(
1− E1k

Ek
coth(βEk/2)

)
. (4.72)

Combining this result with the zeroth-order contribution in Eq. (4.62) we find

n̄ = ρ̄+
1

2

∫
aD

0 dDk

(2π)D

(
1− E1k

Ek
coth(βEk/2)

)
(4.73)

where ρ̄ = (µ+ 2JD)/U .

4.6 Outlook

The T = 0 normal density, ρn, for lattice bosons is generally non-zero. As discussed

in Section 4.3, this property, and the temperature dependence of the superfluid

density, can be experimentally studied using cold atoms. Here we calculated ρn,

and proposed comparing our results with experiment.
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For our calculation we extended the standard saddle-point functional integral

approach. When using a coherent state basis, the discrete time path integral con-

tains extra terms over the continuous time limit version. We explicitly derived

those corrections for the Bose Hubbard model. Similar issues appear in spin mod-

els, and our techniques could be applied there.

Our results are applicable at high density, low temperature, and weak interac-

tion. One could envision extending them to strong interaction by using a different

set of coherent states. For example, in the hard core limit it would be natural to

use |θ, ϕ〉i = cos θ|0〉i + eiϕ sin θ|1〉i, where |0〉i, |1〉i are the states with no parti-

cles or one particle on site i respectively. The other approach to extending the

validity of our results would be to include perturbative corrections. In particular,

one might envision summing an infinite set of these corrections using Feynman

diagram techniques.

We also present results for the superfluid properties of two-component lattice

bosons. These are an active area of research, and there are rich possibilities for

exploring our formalism in those systems. One experiment [51] has seen hints of the

impact of one bosonic species on the superfluid properties of another. Those results

appear to be in the opposite direction from our predictions - however they are in

a stronger interacting regime, near the superfluid-to-Mott insulator transition and

the quantitative applicability of our results to their experiment is questionable.

We also neglect any processes which involve higher bands.
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CHAPTER 5

CORRECTIONS TO THE CONTINUOUS TIME SEMICLASSICAL

COHERENT STATE PATH INTEGRAL

5.1 Introduction

Path integrals convert the difficult problem of diagonalizing a Hamiltonian into the

potentially simpler one of summing over a set of all possible paths, weighted by the

classical action [82, 84]. They are particularly powerful for making semiclassical

approximations, where only a few classical paths dominate. Often the natural

variables for describing the path are conjugate. For example, one would like to

describe a spin system in terms of paths on the Bloch sphere, even though the

different components of spin do not commute [83]. Coherent states are often used

in such cases, and can yield useful results [85, 87,95,121,165,166].

Most path integral formulations involve a continuous imaginary time limit [1].

This limit, however, leads to the rise of well-known anomalies [88, 141, 148] that

were clearly described most recently by Wilson and Galitski [159]. One example

they consider is a path integral calculation of the partition function Z ′ss of the

single site Bose Hubbard model, Ĥss = U
2
n̂(n̂− 1)− µn̂, where n̂ = â†â represents

the number of Bosons, U parameterizes their interaction and µ is the chemical

potential. This is a sufficiently simple model that one can calculate the exact

partition function Zss, and find Zss 6= Z ′ss. In particular, at zero temperature,

the mean occupation number calculated from Z ′ss is 〈n′〉 =
[[

µ
U

]]
, while the exact

result derived from Zss is 〈n〉 =
[[

µ
U

+ 1
2

]]
. Here [[x]] is the integer closest to x.

We analyze here the structure of the discrete, exact, path integral, and de-
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rive an algorithm for correcting the continuous time result for the free energy

F = − 1
β

logZ. To do so, we restrict ourselves to the semiclassical path integral,

expanding the action in quadratic quantum fluctuations around a classical path,

which is known be valid in the discrete formalism [48]. Our correction is given by

F = FCPI − i 1

4∆t

∫ π

0

dχ eiχ log

[
detG−1

ω

det Ḡ−1
ω

]
ω=πeiχ

∆t

(5.1)

where FCPI is the free energy obtained from the continuous-time path integral

(CPI) while the matrices [Gω]ij =
〈
ψiωψ

j
−ω
〉
,
[
Ḡω

]
ij

=
〈
ψiωψ

j
−ω
〉
CPI

are composed

of perturbation field propagators in frequency space for a discrete-time and CPI

calculation, respectively. We precisely define all these terms below as we derive

Eq. (5.1) and discuss techniques for calculating the correction terms. The key

feature of Eq. (5.1) is that it is of the form of the continuous time result plus a

correction. This allows it to be easily integrated into the wide body of work that

makes use of that formalism [7,13,40,49,54,139].

This chapter is based on previously published work [162].

5.2 Path Integral Formulation

The formulation of partition function as a path integral in imaginary time involves

the expansion

Z = Tr e−βĤ =
∑
Ψ0

〈Ψ0|e−βĤ |Ψ0〉

=
∑

Ψ1,...,ΨNt

Nt∏
t=1

〈Ψt−1|e−Ĥ∆t|Ψt〉.
(5.2)

Here β = 1/T is the inverse temperature. {|Ψt〉} is any complete basis of the states,

characterized by a set of parameters Ψt, e.g. Ψt =

(
n, ϕ

)
so that â

∣∣∣∣(n, ϕ)〉 =
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√
neiϕ

∣∣∣∣(n, ϕ)〉 in the coherent state basis of the Bose-Hubbard model. The sum∑
Ψt
|Ψt〉〈Ψt| = I is the identity operator, of which we insert Nt − 1 ≡ β/∆t− 1

copies into the operator. We are now summing over all Nt-point paths in Ψ-space,

with Ψ0 = ΨNt . In the limit of small ∆t one can approximate e−Ĥ∆t ≈ 1 − Ĥ∆t

and thus write the partition function in the form of a discrete time path integral

Z =
∫
DΨ e−

∑
t Lt , where the Lagrangian is

Lt = − log[〈Ψt | Ψt+1〉] + ∆t
〈Ψt|Ĥ|Ψt+1〉
〈Ψt | Ψt+1〉

. (5.3)

5.3 Coherent State Anomaly

As emphasized by Wilson and Galitski [159], the anomalies they discuss are not

related to ambiguities of operator ordering or geometric phases. Rather, they arise

from the over-completeness of coherent states. When the basis {|Ψ〉} is orthogonal,

the first term in this expansion can be taken to be arbitrarily small, and one can

approximate |Ψt+1〉 ≈ (1 + ∆t∂t)|Ψt〉, and by taking ∆t→ 0 convert the problem

into the traditional CPI form [1]. As noted by Solari [141], this approximation

breaks down when expanding in an overcomplete basis; the overlap between the

wavefunctions at consecutive time steps remains finite even when the parameters

describing those wavefunctions are not infinitesimally close. The consequences for

typical paths are illustrated in Fig. 5.1, where we show representative contributions

to the partition function of a harmonic oscillator.

Multiple previous studies have been made of this anomaly. They proceed by re-

turning to the valid discrete time formulation of Eq. (5.3). The approach first used

by Solari [141] involves an iterative evaluation of the simple integrals for each time

step. The resulting recursion relations, in the large Nt limit, become differential
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Figure 5.1: Typical paths in imaginary time space path integral of a harmonic

oscillator. Position x is measured in units of λ0 =
√

~
mω

. Here the inverse temper-

ature is β~ω = 20 and imaginary time is discretized into Nt = 400 steps. In (a) we
show a path in standard configuration space, while (b) shows a coherent state path
with the momentum coordinate integrated out. The configuration space paths are
continuous in the limit Nt →∞, but the coherent paths are not.

equations that may be solved to obtain the semiclassical propagator or the parti-

tion function. Similar formalisms have been applied to the case of the harmonic

oscillator [7, 19], any number of interacting spins [20], and finally any number of

interacting harmonic oscillators [155]. Kochetov, meanwhile, demonstrated that

in the case of the a single spin-half system knowledge of the symmetries of the

system, related to the recursion relations of the previous methods, can be used to

write a CPI action that produces the correct propagator [88].

5.4 Low Frequency Correction

Our approach to the problem differs from Solari’s approach and the related an-

tecedents. We return, as they do, to the mathematically exact discrete action, but

transpose our view to the Fourier domain, where discrete time steps determine

the high-frequency portions of the action. As the low-frequency action remains

identical to what is seen in the continuous formalism, we are able to express our

result in terms of a correction to the results of the continuous-time formalism. In
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addition, the technique we present may be used with any overcomplete basis, and

the approach may be readily used in higher-order calculations.

We begin by following the standard procedure [140] to characterize the states in

terms of a saddle point solution Ψ̄ satisfying
[
δLt
δΨt

]
Ψt=Ψ̄

= 0, and a fluctuation ψt,

writing Ψt = Ψ̄ +ψt. We then expand to quadratic order in the fluctuations Lt =

L0+ψt ·L2 ·ψt+ψt ·L2∆ ·ψt+1+O(|ψt|)3 where the classical energy L0 and matrices

L2, L2∆ are independent of time. This saddle point approximation becomes exact

as the number of local degrees of freedom become large. For example, in the Bose

Hubbard Model, it is the leading correction in a 1/n expansion, where n is the

average number of particles per site. Similarly, in a spin system, the total spin S

plays the role of n. In terms of the Fourier components ψω = 1√
Nt

∑
t e
−iωtψt, the

partition function reads

Z =

∫
Dψ exp

[
−βF0 −

1

2

∑
ω=ωn

ψω ·G−1
ω ·ψω

]
(5.4)

where summation is over the frequencies ωn = 2π
β
n for n = −Nt−1

2
. . . Nt−1

2
, yielding

the free energy

F = F0 +
1

β

Nt−1
2∑

n=−Nt−1
2

1

2
log

[
detG−1

ωn

2π

]
. (5.5)

This compares with the free energy given by the continuous-time formalism,

FCPI = FCPI
0 + 1

β

∑∞
n=−∞

1
2

log
[

det Ḡ−1
ωn

2π

]
where Ḡ−1

ωn is the CPI fluctuation matrix.

As we take ∆t→ 0, generically we expect the classical free energy to converge to

the continuous result F0 → FCPI
0 , and the sum

∑
|n|>Nt−1

2

1
2

log
[

det Ḡ−1
ωn

2π

]
→ 0.

The difference in energies is given then by

F − FCPI =
1

β

Nt−1
2∑

n=−Nt−1
2

1

2
log

[
detG−1

ωn

det Ḡ−1
ωn

]
. (5.6)
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We can replace this sum with a contour integral, using the identity

1

2π

∮
γ

dω
f(ω)

eiβω − 1

=
1

β

∑
ω=ωn

f(ω) + i
∑
ωf

Res

[
f(ω)

eiβω − 1
, ωf

]
.

(5.7)

Here the last sum is over the poles ωf of f(ω) inside the contour γ, and γ is the

complex circle defined by |ω| = 2π
β
Nt
2

= π
∆t

. The notation Res[f(ω), ωf ] refers to

the residue of f(ω) at ω = ωf and here f(ω) = 1
2

log
[

detG−1
ω

det Ḡ−1
ω

]
.

The last term of Eq. (5.7) vanishes: for any fixed ω, lim∆t→0G
−1
ω = Ḡ−1

ω . Thus

the function f(ω) is analytic inside γ, and the set {ωf} of singularities is empty.

For |ω∆t| > π, the matrices G−1
ω and Ḡ−1

ω are no longer simply related, and f(ω)

has branch cut singularities outside of γ.

Once the residue term is eliminated, we are left with the contour integral. This

integral involves fluctuations of frequency ωmax = π
∆t

, corresponding to the time

scale separating consecutive time steps. When the basis |Ψt〉 is orthogonal these

fluctuations are vanishingly small, but for an overcomplete basis they are finite,

and the contour integral does not vanish. Straightforward algebra then reduces

Eqs. (5.6) and (5.7) to the expression in Eq. (5.1).

5.5 Discrete Time Corrections

5.5.1 The Bose Hubbard Model

A clear example of this calculation is provided by the single-site Bose-Hubbard

Hamiltonian. Using the coherent state basis and the field ψt =

(
δnt, φt

)
, the
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components of the quadratic Lagrangian are

L0 =
1

2

µ2

U
∆t

L2 =

 U
4µ

(1 + µ∆t) 0

0 µ
U

(1− µ∆t)


L2∆ = −[1− µ∆t]

 U
4µ

i
2

− i
2

µ
U


(5.8)

and so

detG−1
ω = 2(1− cos(ω∆t))(1− µ∆t). (5.9)

This compares with the CPI result det Ḡ−1
ω = (βω)2, and indeed the ratio of the

two is finite everywhere for |ω| ≤ π/∆t. By performing the contour integral one

finds the difference between the free energies F − FCPI = µ
2

up to an irrelevant

constant.

The power of this approach is more readily apparent in the multisite Bose

Hubbard model. Consider a D-dimensional cubic lattice of Ns sites with lattice

constant a0. There momentum is a good quantum number and one can consider

Gω,k. The large ω structure takes on the simple form

detG−1
ω,k

det Ḡ−1
ω,k

=
2(1− cos(ω∆t))(1 + εk∆t)

β2ω2
(5.10)

where εk = 4J
∑D

j=1 sin2(kja0/2)−µ. By performing the contour integral one finds

simply,

F − FCPI =
1

2
(µ− 2J ×D)Ns (5.11)

plus a constant. This is the same µ dependence as the single-site problem.
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This correction to the free energy has allowed us to calculate the superfluid

density of lattice bosons [160] within the validity range of the semiclassical ap-

proximation.

5.5.2 Spin System

For completeness sake, we present the second system explored by Wilson and

Galitski in [159]. We examine the Hamiltonian Ĥ = Ŝ2
z for a spin S system. The

difference in free energies between the exactly-calculated and the CPI results is

given, at T → 0, by ∆F = −S
2
. Using the semiclassical formalism presented here,

one finds

detG−1
ω

det Ḡ−1
ω

=
2(1− cos(ω∆t))

(
1−

(
S − 1

2

)
∆t
)

β2ω2
(5.12)

leading to a correction of F = FCPI −
(
S
2
− 1

4

)
. Our finite time-step correction

accounts for most of the discrepancy, while the remaining O(S)0 term arises from

the semiclassical approximation.
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Part III

Dynamics
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CHAPTER 6

HEATING FROM CONTINUOUS NUMBER DENSITY

MEASUREMENTS IN OPTICAL LATTICES

6.1 Introduction

One of the most important recent advances in cold atom experiments is single-site

resolved imaging in optical lattices [6,56,111,137]. Presently these techniques are

destructive, and do not directly yield dynamical information. While back-action

from measurement is inherent to quantum mechanics, a less destructive local probe

is desirable, as it would enable whole classes of new experiments [116]. Here we

explore the ultimate limits on such a program, calculating how correlations evolve

during ideal continuous local density measurements. We quantify the heating in

weakly and strongly interacting gases.

Quantum back action arises when the system’s energy eigenstates and the mea-

surement operator do not commute. While this back action can be a useful re-

source [10,34,43,45,73,106,135], more often it leads to unwanted heating or deco-

herence [33,52,57,65,102]. We consider measuring the local density of atoms in a

lattice. Such a measurement localizes individual atoms to single sites, projecting

their wavefunctions to superpositions of momentum states. As noted by Poletti

et al., [123], in the long-time limit, this results in an infinite temperature system

where all kinetically accessible many-body Fock states are equally likely.

We quantify the approach to this steady state using a master equation for

the non-unitary evolution of the density matrix and observables. In the weakly-

interacting limit, where atoms are highly delocalized, off-diagonal elements of the
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single particle correlation function fall off exponentially with time. In the strongly-

interacting limit, where number density is nearly a good quantum number, we find

slower evolution: an exponential stage where quasiparticle momenta are scrambled

is followed by a slow proliferation of excitations and a parallel decay in correlations.

This heating arises even if the measurement photons are never detected. Thus

our formalism is nearly identical to that used by others [22, 37, 101, 118, 119, 122,

123, 134] to study spontaneous off-resonant light scattering in an optical lattice.

Other works approached the subject using different formalisms [8, 55,74,86,131].

Our principal results come from from applying variants of the Bogoliubov ap-

proximation and calculating the time dependence of single particle correlation func-

tions. Such approaches work well in both the weakly and strongly interacting lim-

its, but do not accurately describe intermediate coupling strength [68]. Previous

works used one-dimensional numerical techniques or assumed slow photon scat-

tering rates. Our approximations apply to three-dimensional systems and do not

restrict the scattering rate. Our results are consistent with previous studies, and

in many places extend our understanding. For example, the doublon-holon picture

we present in Section 6.4 gives a clear explanation of the two timescale that have

been previously observed in the Mott regime [123] and allows us to quantify the

decay rates associated with each.

Our paper is organized as follows. In Section 6.2, we introduce our model and

the master equations used to calculate the evolution of the system. From the form

of the expressions we make some general observation about the evolution of mo-

mentum states and single-particle correlations. In Section 6.3, we use a Bogoliubov

approach to integrate the master equations for weakly interacting bosons. In Sec-

tion 6.4 we extend these calculations to the Mott regime through a doublon-holon
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formalism. Finally, in Section 6.5 we consider the use of longer-wavelength light

in measurement, exploring the trade-off between information extracted from the

system and the heating caused by measurement.

6.2 Model

We model the optical lattice system with the single-band Hubbard model, rewritten

slightly as

Ĥ = −J
∑
〈i,j〉

(
â†i âj + â†j âi

)
+
∑
i

U
2
n̂i(n̂i − 1)− (µ− 2JD)n̂i

=
∑
k

(Jεk − µ)n̂k + U
2

∑
i

n̂i(n̂i − 1)

(6.1)

where âi (â†i ) is the annihilation (creation) operator at site i; 〈i, j〉 are nearest

neighbor sites i and j; n̂i = â†i âi is the occupation operator at site i; n̂k = â†kâk

is the occupation of the momentum mode k; and 2D is the number of nearest

neighbors per site. J , U and µ are the hopping energy, interaction energy and

chemical potential, respectively. Here we define âk = 1√
Ns

∑
i e
ik·ri âi, summing over

Ns sites at positions ri. The kinetic energy is given by Jεk = J
∑

∆ 4 sin2(k ·∆/2)

where the sum is over all lattice basis vectors ∆.

We model the measurement process as an additional term of the form ĤI =

λ
∑

α

(
ĉα + ĉ†α

)
M̂α where ĉα are annihilation operators for a set of independent

zero-temperature photon baths. For single-site resolved position measurements,

we take M̂α = n̂i. We consider a more general operator in Section 6.5. Following

Gardiner [53] we adiabatically eliminate the density matrix of the photons to derive

a master equation for ρ̂, the density matrix of the atoms,

d

dt
ρ̂ = i

[
ρ̂, Ĥ

]
− 1

2
γ
∑
i

[n̂i, [n̂i, ρ̂]], (6.2)
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where we have used that λ is real and n̂i is Hermitian. Here γ is an energy scale

related to the measurement rate. It is proportional to λ and the density of photon

states. A more detailed derivation is found in [118].

While the density matrix contains all information about the system, it has an

exponentially large number of terms. Thus it is more convenient to work with

observables such n̂i, n̂
2
i that are experimentally accessible. Using

〈
Ô
〉

= Tr
[
ρ̂Ô
]
,

the evolution of observables is governed by

d

dt

〈
Ô
〉

= i
〈[
Ĥ, Ô

]〉
− 1

2
γ
∑
i

〈[
n̂i,
[
n̂i, Ô

]]〉
. (6.3)

Most of our results concern bosonic atoms, though we briefly address the case

of noninteracting, spinless fermions. Much of the intuition gained carries over to

interacting fermions. Irregardless of statistics, each photon scattered localizes a

particle, generically heating the system by increasing the kinetic energy.

Throughout, we assume a homogenous system.

6.2.1 Equations of motion for single-particle observables

The single particle correlations can be studied in momentum space or position

space. In a homogenous system, the relevant observables evolve as

d

dt
〈n̂k〉 = −2U 1

Ns

∑
p,q

Im
[〈
â†p−qâ

†
k+qâpâk

〉]
− γ(〈n̂p〉 − ρ), (6.4)

d

dt

〈
â†i âj

〉
= iU

(〈
â†i n̂iâj

〉
−
〈
â†i n̂j âj

〉)
− γ
(〈
â†i âj

〉
− ρδi,j

)
. (6.5)
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where ρ = Np/Ns is the average occupation per site. These are related by
〈
â†i âj

〉
=

1
Ns

∑
k e

ik(ri−rj)〈n̂k〉. Setting i = j in Eq. (6.5) produces the intuitively obvious

result that the average density ρ =
〈
â†i âi

〉
is constant.

6.2.2 Energy gain

Applying Eq. (6.3) to the Hamiltonian, we find irrespective of interactions

d

dt
〈E〉 =

d

dt

〈
Ĥ
〉

= γJ
∑
k

εk(ρ− 〈n̂k〉). (6.6)

The instantaneous rate of energy gain depends only on the kinetic energy in the

system. It is proportional to the difference between the kinetic energy and the

“infinite-temperature” kinetic energy of a system with 〈n̂k〉 = ρ.

Equation (6.6) applies to both bosons and fermions. Fermions tend to have

broader equilibrium momentum distributions, hence lower rates of energy gains.

For free bosons at zero temperature 〈n̂k〉 = δk,0Np, and one finds initially

1
Np

d
dt
〈E〉 = 2γJ ×D. The equivalent result for free fermions is shown in Fig. 6.1 as

a function of filling. As 〈ni〉 → 0, the fermionic rate approaches the bosonic rate.

This result differs from Eq. (31) in [118]. There the off-resonant light scattering

from the lattice can drive atoms to high bands, while we consider measurements

that are engineered to keep atoms in the lowest band. For example, in [116],

Raman side-band cooling rapidly returns atoms to the lowest band.
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Figure 6.1: Initial rate of energy gain, 1
2γJD

1
Np

d
dt
〈E〉 as function of the filling frac-

tion 〈n̂〉 for spinless fermions, in various dimensions. For noninteracting bosons,
the initial rate is always 1

Np
d
dt
〈E〉 = 2γJD. Here J is the hopping energy, γ the

measurement rate and D is the dimension of the system.

Non-interacting particles

If U = 0, Eqs. (6.4) and (6.5) are readily integrated,

〈n̂k〉 = (〈n̂k〉t=0 − ρ)e−γt + ρ (6.7)

〈
â†i âj

〉
=
(〈
â†i âj

〉
t=0
− δijρ

)
e−γt + δijρ. (6.8)

These expressions hold for both noninteracting bosons and fermions, the only

difference being initial conditions. The correlations decay exponentially with a time

constant τm = 1/γ set by the measurement rate. The occupation of momentum

states approaches a uniform distribution.
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6.3 Weakly Interacting Bosons

We extend our analysis to the weakly interacting case by a variant of the Hartree-

Fock-Bogoliubov-Popov (HFBP) approach [60]. This approximation is well vali-

dated for static quantities in dimensions greater than one. It is a gapless model

which includes interactions between atoms and discards some of the coherences

between non-condensed particles.

Within this formalism we calculate 〈n̂k(t)〉 for k 6= 0, then infer the condensate

density via ρc = 〈n̂0〉
Ns

= ρ − 1
Ns

∑
k 6=0〈n̂k〉. The occupation numbers evolve with

Eq. (6.3), where we approximate Ĥ by the HFBP Hamiltonian

ĤHFBP = −U
2

(2ρ− ρc)〈n̂0〉

+
∑
k 6=0

(Jεk + Uρc)n̂k +
1

2
Uρc

(
âkâ−k + â†kâ

†
−k

)
.

(6.9)

Evaluationg the commutators in Eq. (6.3) yields

d

dt
〈n̂k〉 = −2UρcIm[〈âkâ−k〉]− γ(〈n̂k〉 − ρ), (6.10)

d

dt
〈âkâ−k〉 = −2i(Jεk + Uρc)〈âkâ−k〉 − iUρc(〈n̂k〉+ 〈n̂−k〉+ 1)

− γ
(
〈âkâ−k〉+ 1

Ns

∑
p〈âpâ−p〉

)
,

(6.11)

whereby the equations of motion of 〈n̂k〉 are coupled to those of 〈âkâ−k〉.

Consistent with the Popov approximation, we replace
∑

p〈âpâ−p〉 → ρc. This

approximation only discards terms which vanish as Ns →∞.

These coupled equations can be perturbatively integrated for U � Jεk, yielding
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to first order in U/J ,

〈n̂k〉 ≈ (〈n̂k〉t=0 − ρ)e−γt + ρ
Uρ2

J

4J2εk
γ2 + 4J2εk2

e−γt
(
1− e−γt

)
+
Uρ2

J

2γ
(
γ sin2(Jεkt) + Jεk sin(2Jεkt)

)
εk(γ2 + 4J2εk2)

e−2γt.

(6.12)

By integrating over all momenta we find the condensate density. The leading

behavior coincides with Eqs. (6.7) and (6.8). The deviation from this form is

shown for a range of γ/J in Fig. 6.2. In three dimensions, this deviation is capped

at ρc − ρe−γt ∼ 0.1Uρ
2

J
. We expect detecting it would be very difficult.
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Figure 6.2: Corrections to the exponential decay of the condensate density, ∆ρc =
ρc(t)− ρe−γt, induced by weak interactions. From top to bottom (blue, magenta,
yellow) the corrections for γ/J = 0.1, 1, 5 in a three-dimensional cubic lattice.

6.4 Strongly-Interacting Bosons

The low-energy states of the U/J � 1 Bose-Hubbard model with near integer

filling, |ρ− n̄| � 1 for some integer n̄, can be described by the subspace made up

of states where the single site occupations are n̄, n̄± 1 [9]. We model this behavior

by introducing “doublons” and “holons” as hard-core particles representing an
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occupation of one-higher or one lower than the mean n̄,

âi →
√
n̄+ 1d̂i +

√
n̄ĥ†i (6.13)

with d̂2
i = ĥ2

i = ĥid̂i = 0. The names “doublons” and “holons” are motivated by

the most common case, n̄ = 1. The effective Hamiltonian becomes

ĤDH =
∑
k

[
U

2
+ J

(√
ñ2 + 1

4
+ 1

2

)
εk

]
d̂†kd̂k

+

[
U

2
+ J

(√
ñ2 + 1

4
− 1

2

)
εk

]
ĥ†kĥk

+ Jñεk

(
d̂kĥ−k + ĥ†−kd̂

†
k

)
(6.14)

where d̂k, ĥk are related to d̂i, ĥi in the same way as âk is to âi. Here the kinetic

energy is Jεk = J(εk − 2D) = −2J
∑

∆r cos(k ·∆r) and ñ =
√
n̄(n̄+ 1).

This structure is similar to that in Eq. (6.9) with two exceptions. First, the

Hamiltonian of Eq. (6.14) allows for the creation of doublons and holons in pairs.

Second, the hard-core constraints give non-bosonic commutation relations (see

Eq. (6.30) in the appendix). Neglecting non-coherent summations, these relations

become

[
d̂k, d̂

†
q

]
→ δk,q

(
1− 2n̂d − n̂h

)
, (6.15)

where n̂d = 1
Ns

∑
k d̂
†
kd̂k is the density of doublons and n̂h the density of holons.

This approximation is equivalent to a mean field theory of the interactions.

We apply Eq. (6.3) to the Hamiltonian of Eq. (6.14), using the approximate

commutation relations of Eq. (6.15). We decouple the equations for two-point

functions from higher order correlations by assuming

〈
n̂dd̂†kd̂k

〉
→ nd

〈
d̂†kd̂k

〉
(6.16)

and similarly for combinations of n̂d, n̂h with d̂†kd̂k, ĥ
†
kĥk or d̂kĥ−k. Here nd =

〈
n̂d
〉
.
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Under these assumptions, we find a set of coupled equations for
〈
d̂†kd̂k

〉
,〈

ĥ†kĥk

〉
,
〈
d̂kĥ−k

〉
and nd, nh. Working in the commensurate case, ρ = n̄ and

hence nd = nh, we solve these equations as detailed in Section 6.7.

We find that the behavior of the system is characterized by two processes with

two corresponding time scales.

The first process, occurring at a rate 1/τm ∼ γ, involves the localization of

quasiparticles when they are detected. It is illustrated by the occupation number

of doublons with momentum k,〈
d̂†kd̂k

〉
=
[〈
d̂†kd̂k

〉
t=0
− ndk

]
e−γt + ndk

− e−γt∆k[
γ2

U2 (1− cos (Ut)) + γ
U

sin (Ut)] +O
(
J
U

)3
.

(6.17)

Apart from the structure of the transient oscillatory term, this behavior is similar

to the weakly-interacting case in Eq. (6.12). The momentum distribution of the

quasiparticles is driven to one which is slowly varying and nearly uniform,

ndk = nd +
J2

U2

2ñ2
(
1− 3nd

)2
U2

(1− 3nd)2U2 + γ2

(
1− nd

)(
ε2
k − 2D

)
. (6.18)

As is explicit in the form of the correction, this represents a competition between

the coherent creation of quasiparticles and the measurement-induced destruction

of coherences.

In parallel, the measurement process results in a slow increase in the total

number of quasiparticles. The rate of this process is characterized by 1/τp ∼
4Dñ2J2

U2+γ2 γ and it is governed by the nonlinear equation of motion

d

dt
nd =

J2

U2

4Dñ2
(
1− 3nd

)2
U2

(1− 3nd)2U2 + γ2

(
1− nd

)
γ×[

1− e−γt
(
cos (Ut) + γ

U
sin (Ut)

)
+O

(
J
U

)]
.

(6.19)
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One intuition for this growth comes from picturing the Mott insulator state as

filled with virtual doublon-holon pairs. Whenever a virtual doublon or holon is

imaged, the pair is converted into a real doublon and holon.

For shorter times, γt �
(
J
U

)−2
, the number of excitations remains small,

nd � 1. Then the right hand side of Eq. (6.19) may be integrated,

nd = ndt=0 +
4DñJ2

U2 + γ2

[
γt− 2γ2

U2+γ2

(
1− e−γtΞ(t)

)
+O

(
J
U
, nd
)]
, (6.20)

where the transient oscillations

Ξ(t) = cos (Ut)− 1

2

(
U
γ
− γ

U

)
sin (Ut) (6.21)

are followed by linear growth in the excitation density.

The complete time evolution of
〈
nd
〉

is plotted in Fig. 6.3 for typical parameters.

Within our approximations, nd → 1
3

as long times. This is the infinite tem-

perature limit of the model in Eq. (6.14): each site is equally likely to be empty,

have a doublon or have a holon. However, once nd is of order unity, the model no

longer fully describes the physics, and one must include larger fluctuation in the

site occupation to fully capture the physics.

The atom correlation functions can be calculated from those of the doublons

and holons. They will be short ranged, dominated by nearest neighbor correlations,

such as 〈
â†i âi+1

〉
=
J

U

2ñ2
(
1− 3nd

)2
U2

(1− 3nd)2U2 + γ2

(
1− nd

)
×[

1 + e−γt( γ
2

U2 cos (Ut)− γ
U

sin (Ut)) +O
(
J
U

)] (6.22)

These are plotted in Fig. 6.4 for typical parameters. As discussed above, two time

scale are apparent in the graph.
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Figure 6.3: Growth in doublon density with measurement in a Mott system. At
short times, the measurement process primarily scatters doublons into a uniform
momentum occupation. This is followed by a growth in doublon density that is
initially linear and levels off as a result of the hard-core constraints on doublon
occupation. From top to bottom (blue, magenta, yellow) γ/U = 0.5, 1, 2, in a
three-dimensional cubic lattice with J/U = 0.05 , n̄ = 1.
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Figure 6.4: The evolution of the nearest-neighbor single-particle correlation func-

tion
〈
â†i âi+1

〉
in a Mott system. From top to bottom (blue, magenta, yellow)

γ = 0.5, 1, 2, in a three-dimensional cubic lattice with J = 0.05U , n̄ = 1.
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6.5 Long wavelength measurements

We have explored so far the destruction of non-local correlations from the spon-

taneous localization of atoms to single lattice sites. As previously noted [69, 118],

the length scale of the localization is determined by the wavelength of the emitted

light. Here we extend our argument to the case where the wavelength of light

measuring the system is larger than the lattice spacing.

A simple model of such a measurement is

M̂i = n̂ξi =
1

Nξ

∑
j

e
− 1

2

(
rj−ri
ξ

)2

n̂j, (6.23)

where the normalization is Nξ =
∑

i e
− 1

2
(ri/ξ)

2

is proportional to the width of the

measurement.

Measurement with such long wavelength light does not localize the atoms to

single lattice sites. One learns less about the system, but perturbs it proportionally

less.

For free particles, the evolution of momentum states is replaced by the equation

d

dt
〈n̂k〉 = −

Nξ/√2

(Nξ)2 γ
(
〈n̂k〉 − 1

Ns

∑
Gξ(p)〈n̂k+p〉

)
(6.24)

where Gξ(p) =
∑

i e
−1

4

( ri
ξ

)2

eipri . For the two-point correlation we find the closed

form 〈
â†i âj

〉
=
〈
â†i âj

〉
t=0
e−γ̄|i−j|t

γ̄|i−j| = gξ

√
1
π

∆r
2Dξ

(
1− exp

[
−1

4

(
ri−rj
ξ

)2
])
,

(6.25)

where ∆r is the spacing between sites and the function gξ =
Nξ/√2

(Nξ)
2

[√
1
π

∆r
2Dξ

]−1

has

gξ ≈ 1 for |ξ| & |∆r|. Thus the rate at which correlations are lost is suppressed
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linearly in ξ and correlations on scales smaller than ξ decay at a much reduced

rate.

6.6 Summary

We would like to have non-destructive site-resolved measurements. Unfortunately,

no measurement is entirely non-destructive. Here we have quantified the effect of

an ideal density measurement on a lattice system. In the superfluid regime, we use

Bogoliubov theory to show that all spatial correlations decay exponentially with γt,

the number of photons scattered. In the Mott regime, we find that the momenta of

the quasiparticles are quickly scrambled, leading to a slowly evolving quasi-steady

state. In this slow-proliferation stage, fluctuations in the on-site density gradually

grow. Similar physics was seen in numerical studies [122,123].

We predict how momentum occupation and single-particle correlations evolve

with time. The former can be studied through time of flight experiments [35].

Protocols exist for the direct measurement of the single particle correlation function

[63, 64, 130, 146]. Finally, though our focus is on measurement, the formalism and

all of our results apply to spontaneous emission (in the absence of excitations

to higher bands). As such they provide a quantitative estimate of the effects of

spontaneous emission on coherence.

It is useful to put the loss of correlations into the context of the information

gained as light is emitted. Assuming no dynamics, the continual measurement

reduces the uncertainty in the number of atoms on a given site with time, δn2
i ∼

e−γt [58]. Thus, in the superfluid regime, the uncertainty falls at the same rate as

do the correlations. In the Mott regime the uncertainty falls faster.
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In this regard, long-wavelength measurements may be advantageous. If one

wishes to measure the total number of particles in the cloud, the reduced uncer-

tainty is set by the number of scattered photons, not their wavelength. As seen

above, however, the backaction is reduced for long-wavelength probes. In general,

one would wish to tailor the process of measurement so that all information carried

by the probe is experimentally accessible.

6.7 Full Derivation of the Strongly Interacting Model

We present here the full derivation of our results for strongly interacting bosons.

Our starting point is the Hamiltonian

ĤDH =
∑
k

[
U
2

+ J

(√
ñ2 + 1

4
+

1

2

)
εk

]
d̂†kd̂k

+

[
U
2

+ J

(√
ñ2 + 1

4
− 1

2

)
εk

]
ĥ†kĥk

+ Jñεk

(
d̂kĥ−k + ĥ†−kd̂

†
k

)
(6.26)

where as before, εk = −2
∑

∆r cos(k ·∆r) and ñ =
√
n̄(n̄+ 1). With this Hamil-

tonian the difference between the total number of doublons and holons is constant.

We work in the commensurate case, where the particle density is given by the

integer n̄ and the total number of doublons equals the total number of holons.

The operators d̂i and ĥi have a hard core constraint d̂2
i = ĥ2

i = d̂iĥi = 0. In

equilibrium, at small J/U and T/U , this constraint has little effect as the densities

of doublons and holons is small. During the measurement process, however, the

number of quasiparticles grows, and we will need to include these constraints.
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6.7.1 Initial State

The initial equilibrium properties of Eq. (6.26) can be calculated by performing a

Bogoliubov transformation, as in Section 2.6.2,

d̂k = cosh θkd̃k + sinh θkh̃
†
−k,

ĥk = cosh θkh̃k + sinh θkd̃
†
−k,

tanh(2θk) = − 2Jñεk

U + 2J
√
n̄2 + 1

4
εk

. (6.27)

Neglecting the hard-core constraints, which can be ignored for low-defect densities,

d̃k, h̃k are bosonic operators and the Hamiltonian takes the diagonal form

ĤDHB =
∑
k

(
Ẽk +

1

2
Jεk

)
d̃†kd̃k +

(
Ẽk −

1

2
Jεk

)
h̃†kh̃k,

Ẽk =
1

2

√(
U + 2J

√
ñ2 + 1

4
εk

)2

− (2Jñεk)
2.

(6.28)

We take our initial conditions to correspond to the ground state, where〈
d̃†kd̃k

〉
=
〈
h̃†kh̃k

〉
= 0, and hence

〈
d̂†kd̂k

〉
t=0

=
〈
ĥ†kĥ−k

〉
t=0

=
(
J
U

)2
ñ2ε2

k +O
(
J
U

)3
,〈

d̂kĥ−k

〉
t=0

= − J
U
ñεk +O

(
J
U

)2
.

(6.29)

The calculation may be easily extended to low finite temperatures as long as the

initial particle densities remain of the order
(
J
U

)2
.

6.7.2 Evolution Equations

To obtain the full evolution equations we must now include the hard core con-

straints. In momentum space, these constraints lead to the commutation relations
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[
d̂k, d̂

†
q

]
= δk,q − 1

Ns

∑
p

2d̂†q+pd̂k+p + ĥ†q+pĥk+p[
ĥk, ĥ

†
q

]
= δk,q − 1

Ns

∑
p

d̂†q+pd̂k+p + 2ĥ†q+pĥk+p[
d̂k, ĥ

†
q

]
= − 1

Ns

∑
p

ĥ†q+pd̂k+p.

(6.30)

In these sums, the terms where operators have different momentum indices will

add incoherently, suggesting the approximation[
d̂k, d̂

†
q

]
≈ δk,q

(
1− 2n̂d − n̂h

)
,[

ĥk, ĥ
†
q

]
≈ δk,q

(
1− 2n̂h − n̂d

)
,

[
d̂k, ĥ

†
q

]
≈ 0,

(6.31)

where n̂d = 1
Ns

∑
k d̂
†
kd̂k and similarly for n̂h.

We substitute Eq. (6.26) into Eq. (6.3), using the commutators in Eq. (6.31),

for Ô = d̂†kd̂k and Ô = d̂kĥ−k. We assume that the total number of quasiparticles

is uncorrelated with their momentum distribution,〈
n̂dd̂†kd̂k

〉
≈ nd

〈
d̂†kd̂k

〉
,

〈
n̂dĥ†kĥk

〉
≈ nd

〈
ĥ†kĥk

〉
,〈

n̂dd̂kĥ−k

〉
≈ nd

〈
d̂kĥ−k

〉
,

〈
n̂hd̂†kd̂k

〉
≈ nh

〈
d̂†kd̂k

〉
,〈

n̂hĥ†kĥk

〉
≈ nh

〈
ĥ†kĥk

〉
,

〈
n̂hd̂kĥ−k

〉
≈ nh

〈
d̂kĥ−k

〉
,

(6.32)

where nd,h =
〈
n̂d,h

〉
. One can formally derive these relations through perturbation

theory in J/U , although their validity is wider.

The evolution is then governed by two coupled nonlinear differential equations,

d

dt

〈
d̂†kd̂k

〉
= −2ñJ̄tεkIm

[〈
d̂kĥ−k

〉]
− γ
(〈
d̂†kd̂k

〉
− nd

)
(6.33)

d

dt

〈
d̂kĥ−k

〉
= −iñJ̄tεkPt − i

(
Ūt + 2

√
ñ2 + 1

4
J̄tεk

)〈
d̂kĥ−k

〉
− γ
〈
d̂kĥ−k

〉
. (6.34)
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where all k dependence is through εk = −2
∑

∆r cos(k ·∆r). Here

J̄t = J
(
1− 3nd

)
, Ūt = U

(
1− 3nd

)
, Pt =

(
1 + 2

〈
d̂†kd̂k

〉
− 3nd

)
(6.35)

are time dependent, but, as we will see, vary at a rate much slower than γ.

In the commensurate case, nd = nh, and one finds identical initial values and

evolution equations for the momentum occupation of holons and doublons, hence〈
d̂†kd̂k

〉
=
〈
ĥ†kĥk

〉
at all times.

6.7.3 Ansatz Solution

All of the k-dependence in Eqs. (6.33) and (6.34) arises from terms of the form

Jεk. Since J � U , we can expand in this product, finding〈
d̂†kd̂k

〉
=
〈
ĥ†−kĥ−k

〉
= dd(0) + dd(2)

(
J
U

)2
ε2
k +O

(
J
U

)3〈
d̂kĥ−k

〉
= dh(1)

(
J
U

)
εk +O

(
J
U

)2
.

(6.36)

where dd(0), dd(2), dh(1) are functions of time but not k. By Fourier transforming

these expressions we can relate them to the more familiar

nd = dd(0) + 2D
(
J
U

)2
dd(2) +O

(
J
U

)3
,

〈
d̂iĥi+1

〉
= − J

U
dh(1) +O

(
J
U

)2
. (6.37)

Equations (6.33) and (6.34) then reduce to

d

dt
nd =

(
J
U

)
4DñJ̄tIm

[〈
d̂iĥi+1

〉
/ J
U

]
+O

(
J3

U2

)
(6.38)

d

dt

〈
d̂iĥi+1

〉
= iñJ̄t

(
1− nd

)
− iŪt

〈
d̂iĥi+1

〉
− γ
〈
d̂iĥi+1

〉
+O

(
J2

U

)
(6.39)
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d

dt
dd(2) = 2ñŪtIm

[〈
d̂iĥi+1

〉
/ J
U

]
− γdd(2) +O(J) (6.40)

while the initial conditions are

ndt=0 =
(
J
U

)2
2Dñ2, dd

(2)
t=0 = ñ2,

〈
d̂iĥi+1

〉
t=0

= J
U
ñ. (6.41)

We note that Eqs. (6.38) and (6.39) are coupled to each other but independent

of Eq. (6.40). At this point, the equations may be numerically integrated for any

given values of γ, J, U . Typical values are plotted in in Figs. 6.3 and 6.4.

6.7.4 Short Time Behavior

The initial and short-time behavior of Eqs. (6.38) and (6.39) can be analyzed using

ndt=0 ∼
(
J
U

)2
. Thus, we can neglect the non-linear terms, J̄t ≈ J, Ūt ≈ U finding

d

dt
nd = J

U
4DñJ Im

[〈
d̂iĥi+1

〉
/ J
U

]
+O

(
J3

U2 , n
d
)

(6.42)

d

dt

〈
d̂iĥi+1

〉
= iñJ − iU

〈
d̂iĥi+1

〉
− γ
〈
d̂iĥi+1

〉
+O

(
J2

U
, nd
)
. (6.43)

Equation (6.43) produces a function which oscillates with frequency U while de-

caying at a rate γ to a steady state value,

〈
d̂iĥi+1

〉
=
[〈
d̂iĥi+1

〉
t=0
− iJñ

iU+γ

]
e−γte−iUt + iJñ

iU+γ
. (6.44)

Using this result to calculate the number of doublons, we find

nd = ndt=0

+
4Dñ2J2

U2 + γ2

[
γt− 2γ2

U2+γ2

(
1− e−γt

[
cos(Ut)− 1

2

(
U
γ
− γ

U

)
sin(Ut)

])]
.

(6.45)
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Aside from small transients, we see a linear increase in nd with characteristic

rate 1/τp = 4Dñ2J2

U2+γ2 γ. Physically, this is the rate at which virtual doublon-holon

pairs are imaged. This linearized theory breaks down when nd ∼ 1. Thus it is

valid until t ∼ τp � 1/γ.

6.7.5 General Behavior

Given the separation of timescales between the rate of change in nd and
〈
d̂iĥi+1

〉
,

we can adiabatically eliminate the nonlinear terms in Eq. (6.38), rather than simply

neglecting them. This yields〈
d̂iĥi+1

〉
=
〈
d̂iĥi+1

〉
t=0
e−γte−iUt +

〈
d̂iĥi+1

〉long
+
(
1− e−γte−iUt

) iñJ
(
1− 3nd

)
iU(1− 3nd) + γ

(
1− nd

)
+O

(
J
U

)2
(6.46)

at all times. When nd � 1, this reduces to Eq. (6.44).

Substituting this expression into Eq. (6.38) yields

d

dt
nd =

J2

U2

4Dñ2
(
1− 3nd

)2
U2

(1− 3nd)2U2 + γ2

(
1− nd

)
γ
[
1− e−γt

(
cos(Ut) + γ

U
sin(Ut)

)]
(6.47)

which simplifies to Eqs. (6.44) and (6.45) for nd � 1. Likewise, we adiabatically

eliminate Eq. (6.40) to obtain Eq. (6.20) in the main text.
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CHAPTER 7

THE DYNAMICS OF LATTICE INTERACTION RAMPS ACROSS

THE PHASE BOUNDARY

7.1 Introduction

The dynamics of systems driven through a phase transition are a source of rich

physics [136]. The phenomenology is particularly interesting in zero-temperature

systems driven through a quantum phase transition [5,144]. In recent years, break-

through experimental techniques in atomic physics have given us a direct probe of

such transitions [27,59,71,114,147]. In this paper, we model a bosonic lattice sys-

tem driven from a Mott insulator state to into the superfluid regime. We introduce

a novel mean-field theory, building on commonly used doublon-holon models [9].

We calculate how correlations develop during a lattice ramp through the phase

transition.

The phase diagram of bosonic lattice systems has been explored thoroughly [44,

61,75,138,149]. In the strongly interacting regime, at commensurate filling, lattice

bosons form an incompressible Mott insulator. Conversely, for weak interactions

the ground state is a superfluid Bose-Einstein condensate with long range order.

When the system begins in a Mott insulator state and interactions are turned off,

correlations grow as quasiparticles propagate across the system [29,108].

The Mott and superfluid phases can be approximated by distinct mean-field

quasiparticle models. The excitations in the superfluid phase are well described

by Bogoliubov quasiparticles made up of superpositions of particles and holes in

the condensate [60]. In the Mott insulator regime, on-site number fluctuations
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are small and the occupation of each site can be truncated to a small number

of possibilities [9]. This approximate Hamiltonian is referred to as the “doublon-

holon” model. These two descriptions are incompatible, making it challenge to

model the dynamics across the phase boundary.

Previous work has produced partial understanding of this transition [38, 126].

Product state methods such as the Gutzwiller ansatz can be used to look for

the the phase transition point but typically cannot calculate correlations [164,

167]. Other approaches have included calculations on small lattices [31], field

theory calculations for large particle density [2,110,124,153] and various numerical

techniques, which work well in one dimension but are otherwise more limited [79,

89,133]. There has also been significant work on sudden quenches [125,152] Here,

we provide an analytical model that is particularly suitable for the small mean

occupation numbers common in atomic experiments, provides access to coherence

data, and is applicable at dimensionality.

7.2 Model

We perform our calculation within an approximate “doublon-holon” model. The

model restricts the state of each site i to the subspace

|i〉 ∈ {|n̄+ 1〉, |n̄〉, |n̄− 1〉} (7.1)

where n̄ is the median number of particles per site. The system can then be

thought of in terms of a mean-occupation background and hard-core quasiparticle

excitations of “holons” (an n̄− 1 occupation) and “doublons” (n̄+ 1 occupation).

The annihilation operators at site i for these quasiparticles are, as defined by their
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operation on the vector

(
|n̄+ 1〉i, |n̄〉i, |n̄− 1〉i

)T
,

d̂i ≡


0 1 0

0 0 0

0 0 0

 ĥi ≡


0 0 0

0 0 0

0 1 0

. (7.2)

Under this approximation, the Hamiltonian is

Ĥ =
∑
k

[
U

2
+ J

(√
ñ2 + 1

4
+ 1

2

)
εk

]
d̂†kd̂k

+

[
U

2
+ J

(√
ñ2 + 1

4
− 1

2

)
εk

]
ĥ†kĥk

+ Jñεk

(
d̂kĥ−k + ĥ†−kd̂

†
k

)
.

(7.3)

Here, d̂k = 1√
Ns

∑
i e
ik·ri d̂i, summing over all sites i, and similar for ĥk, while

εk = −2
∑

∆ cos(k ·∆), summing over lattice basis vectors, ∆ = ∆x̂,∆ŷ,∆ẑ in

three dimensions, or a subset of those in lower dimensions. These represent a cubic

lattice with lattice constant ∆. U and J are the interaction and hopping strength,

respectively, and ñ =
√
n̄(n̄+ 1). Ns is the number of sites in the lattice.

The doublon-holon model is an approximation for the single-band Bose-

Hubbard model [44, 70]. It is most accurate in the low-temperature, strongly-

interacting limit, as the energy of a state increases quadratically with the deviation

from the mean particle number. However, for low occupation numbers n̄, it can be

a good approximation in the weakly-interacting limit as well. In a noninteracting

superfluid gas with n̄ = 1, the probability of finding more than two particles on a

given site is less than 10%.

We do all our calculations in this regime, 〈n̂i〉 = n̄+
〈
d̂†i d̂i

〉
−
〈
ĥ†i ĥi

〉
= n̄ = 1.

Though the Hamiltonian of Eq. (7.3) is quadratic, the hard-core constraints on
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d̂ and ĥ translate into non-trivial commutation relations,[
d̂k, d̂

†
q

]
= δk,q − 2n̂dq−k − n̂hq−k,

[
d̂†k, ĥq

]
= ν̂q−k[

ĥk, ĥ
†
q

]
= δk,q − n̂dq−k − 2n̂hq−k,

[
ĥ†k, d̂q

]
= ν̂†k−q[

d̂k, d̂q

]
=
[
ĥk, ĥq

]
=
[
d̂k, ĥq

]
= 0,

(7.4)

where we define the quasiparticle density operators

n̂dk = 1
Ns

∑
i

e−ik·ri d̂†i d̂i, n̂hk = 1
Ns

∑
i

e−ik·riĥ†i ĥi, ν̂†k = 1
Ns

∑
i

e−ik·riĥ†i d̂i. (7.5)

We mark n̂d,h ≡ n̂d,h0 , the density of doublons and holons, respectively. In the

Mott equilibrium limit, these density operators can be neglected and the quasipar-

ticles can be treated as noninteracting bosons to a good degree. This is not true

in other regimes, such as after the interaction strength has been reduced.

Equations of motion can be derived from Eq. (7.3). Equations of motion can

be derived from the Hamiltonian, Eq. (2.40), via the Heisenberg equation,

d

dt

〈
X̂
〉

= i
[
X̂, Ĥ

]
. (7.6)

We focus on the two-point observables,

d

dt

〈
d̂†kd̂k

〉
= iJñεk

(〈
d̂kĥ−k

〉
−
〈
d̂†kĥ

†
−k

〉)

− iJñ
∑
q

εq


(√

1 + 1
4ñ2 + 1

2ñ

)〈
d̂†q
(
2n̂dk−q + n̂hk−q

)
d̂k

〉
+
(√

1 + 1
4ñ2 − 1

2ñ

)〈
ĥ†−qν̂−k−qd̂k

〉
+
〈(

2n̂dk−q + n̂hk−q
)
ĥ−qd̂k

〉
+
〈
ν̂−q−kd̂qd̂k

〉 − h. c.


(7.7)

d

dt

〈
ĥ†−kĥ−k

〉
= iJñεk

(〈
d̂kĥ−k

〉
−
〈
d̂†kĥ

†
−k

〉)

− iJñ
∑
q

εq


(√

1 + 1
4ñ2 − 1

2ñ

)〈
ĥ†−q
(
2n̂hq−k + n̂dq−k

)
ĥ−k

〉
+
(√

1 + 1
4ñ2 + 1

2ñ

)〈
d̂†qν̂

†
−q−kĥ−k

〉
+
〈(

2n̂hq−k + n̂dq−k
)
d̂qĥ−k

〉
+
〈
ν̂†−q−kĥ−qĥ−k

〉 − h. c.


(7.8)
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d

dt

〈
d̂kĥ−k

〉
=

− iU
〈
d̂kĥ−k

〉
− iJñεk(1− 3nd − 3nh + 2nd,d + 2nh,h + 5nd,h + nν,ν)

− iJñ
∑
q

εq

(
δk,q − 1

Ns

)[
2
√

1 + 1
4ñ2

〈
d̂qĥ−q

〉
+
〈
d̂†qd̂q

〉
+
〈
ĥ†−qĥ−q

〉]

+ iJñ
∑
q

εq



(√
1 + 1

4ñ2 + 1
2ñ

)
〈
ĥ−q
(
2n̂dk−q + n̂hk−q

)
d̂k

〉
+
〈
d̂qν̂−q−kd̂k

〉


+
(√

1 + 1
4ñ2 − 1

2ñ

)
〈
d̂q
(
n̂dq−k + 2n̂hq−k

)
ĥ−k

〉
+
〈
ĥ−qν̂

†
−q−kĥ−k

〉


+
〈
ĥ†−q
(
2n̂dq−k + n̂hq−k

)
ĥ−k

〉
+
〈
d̂†qν̂

†
−q−kĥ−k

〉
+
〈
d̂†q
(
n̂dk−q + 2n̂hk−q

)
d̂k

〉
+
〈
ĥ†−qν̂−q−kd̂k

〉


,

(7.9)

nd,d =
〈
n̂di n̂

d
i+∆

〉
, nh,h =

〈
n̂hi n̂

h
i+∆

〉
nd,h =

〈
n̂di n̂

h
i+∆

〉
, nν,ν =

〈
ĥ†i d̂

†
i+∆ĥi+∆d̂i

〉
,

(7.10)

Here h. c. stands for the Hermitian conjugate, while the functions of Eq. (7.10) are

all independent of i,∆ in a cubic lattice.

To perform the time evolution, we must make approximations for the quartic

terms, such as

C1
k =

∑
q

εq

〈
d̂†qn̂

h
k−qd̂k

〉
= 1

Ns

∑
p,q

εq

〈
d̂†qĥ

†
−p−qĥ−p−kd̂k

〉
≡ 1

Ns

∑
p,q

εqCk,q,p. (7.11)

These can be written out as

C1
k = 1

Ns

∑
p

εk

〈
d̂†kĥ

†
−k−pĥ−k−pd̂k

〉
+ 1

Ns

∑
q

εq

〈
d̂†qĥ

†
−qĥ−kd̂k

〉
− 1

Ns
εk

〈
d̂†kĥ

†
−kĥ−kd̂k

〉
+ 1

Ns

∑
p,q

q 6=k,p6=0

εq

〈
d̂†qĥ

†
−p−qĥ−k−qd̂k

〉
.

(7.12)

The first two sums on the right hand side add up coherently, and we expect them

to dominate. The third term is inversely proportional to the system size and
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so negligible. For bosonic operators, one may expect the final sum to add up

incoherently, as in the Hartree-Fock-Bogoliubov approximation [60], suggesting

the form

C1
k ≈ C̃1

k =

(
1
Ns

∑
p

〈
ĥ†−k−pĥ−k−p

〉)
εk

〈
d̂†kd̂k

〉
+

(
1
Ns

∑
q

εq

〈
d̂†qĥ

†
−q

〉)〈
ĥ−kd̂k

〉
.

(7.13)

This intuition fails in the hard-core case. This can be seen by summing over k,∑
k

C1
k = 1

Ns

∑
p,q,k

εq

〈
d̂†qĥ

†
−p−qĥ−p−kd̂k

〉
= 1

Ns

∑
p,q,i

eipriεq

〈
d̂†qĥ

†
−p−qĥid̂i

〉
= 0

∑
k

C̃1
k =

(
1
Ns

∑
p

〈
ĥ†−k−pĥ−k−p

〉)(∑
k

εk

〈
d̂†kd̂k

〉)
.

(7.14)

To account for the hard core constraints, we expand the term in the summand

C1
k,p,q =

〈
d̂†qĥ

†
−p−qĥ−p−kd̂k

〉
=

δk,q

〈
ĥ†−p−qĥ−p−k

〉
d̂†kd̂k + δp,0

〈
d̂†qĥ

†
−q

〉〈
ĥ−kd̂k

〉
− αk,p,q

Ns

〈
d̂†kd̂k

〉
,

(7.15)

where this equation defines αk,p,q. We approximate this function with the hard

core constraint in mind,

αk,p,q ≈
1

〈n̂d〉

〈
ĥ†−p−qĥ−p−q

〉〈
d̂†qd̂q

〉
, (7.16)

so that
∑

k C
1
k,p,q = 0. We then find

C1
k = 1

Ns

∑
p,q

C1
k,p,q ≈

〈
n̂h
〉(
εk − ε0

ξd
nd

)〈
d̂†kd̂k

〉
+ ε0η

∗
〈
d̂kĥ−k

〉
(7.17)

where

nd =
〈
n̂d
〉

ξd = 1
Ns

∑
k

εk
ε0

〈
d̂†kd̂k

〉
η = 1

Ns

∑
k

εk
ε0

〈
d̂kĥ−k

〉
. (7.18)
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We make similar approximations for the other terms,〈
d̂†qd̂
†
p−qd̂p−kd̂k

〉
≈ δq,k

〈
d̂†p−kd̂p−k

〉〈
d̂†kd̂k

〉
+ δp−q,k

〈
d̂†qd̂q

〉〈
d̂†kd̂k

〉
− 2

Ns
1
nd

〈
d̂†qd̂q

〉〈
d̂†p−qd̂p−q

〉〈
d̂†kd̂k

〉
〈
ĥ†−qd̂

†
p+qĥp−kd̂k

〉
≈ δp,0

〈
ĥ†−qd̂

†
q

〉〈
d̂kĥ−k

〉
+ δp+q,k

〈
ĥ†−qĥ−q

〉〈
d̂†kd̂k

〉
− 1

Ns
1
nd

〈
ĥ†−qĥq

〉〈
d̂†p+qd̂p+q

〉〈
d̂†kd̂k

〉
(7.19)

〈
ĥ−qĥ

†
−p−qĥ−p−kd̂k

〉
≈ δq,k

〈
ĥ†−p−kĥ−p−k

〉〈
d̂kĥ−k

〉
+ δp,0

〈
ĥ−qĥ

†
−q

〉〈
d̂kĥ−k

〉
− 1

Ns
1
nd

〈
ĥ†−p−qĥ−p−q

〉〈
d̂qĥ−q

〉〈
d̂†kd̂k

〉
〈
ĥ−qd̂

†
p−qd̂p−kd̂k

〉
≈ δq,k

〈
d̂†p−kd̂p−k

〉〈
d̂kĥ−k

〉
+ δp−q,k

〈
d̂qĥ−q

〉〈
d̂†kd̂k

〉
− 2

Ns
1
nd

〈
d̂qĥ−q

〉〈
d̂†p−qd̂p−q

〉〈
d̂†kd̂k

〉
〈
d̂qd̂
†
p+qĥp−kd̂k

〉
≈ δp,0

〈
d̂qd̂
†
q

〉〈
d̂kĥ−k

〉
+ δp+q,k

〈
d̂qĥ−q

〉〈
d̂†kd̂k

〉
− 1

Ns
1
nd

〈
d̂qĥ−q

〉〈
d̂†p+qd̂p+q

〉〈
d̂†kd̂k

〉
.

(7.20)

Applying these approximations to Eqs. (7.7) to (7.9), we find a closed set of

non-linear, coupled differential equations,

d

dt

〈
d̂†kd̂k

〉
= iJñεk

(〈
d̂kĥ−k

〉
−
〈
d̂†kĥ

†
−k

〉)
− iJñ

 3
(
εknd

〈
d̂kĥ−k

〉
− ε0η

〈
d̂†kd̂k

〉)
+2ε0

(√
1 + 1

4ñ2η
∗
〈
d̂kĥ−k

〉
+ ξd

〈
d̂kĥ−k

〉) − h. c.

 (7.21)

d

dt

〈
d̂kĥ−k

〉
= −iU

〈
d̂kĥ−k

〉
− iJñεk

(
1− 6nd + 9

(
n2
d − ξ2

d

)
+ 6|η|2

)
− 2iJñ

[√
1 + 1

4ñ2

(〈
d̂qĥ−q

〉
− η
)

+
〈
d̂†kd̂k

〉
− ξd

]

+ 2iJñ


√

1 + 1
4ñ2

(
3
(
εknd

〈
d̂kĥ−k

〉
− ε0η

〈
d̂†kd̂k

〉)
+ 2ε0ξd

〈
d̂kĥ−k

〉)
+3(εknd − ε0ξd)

〈
d̂†kd̂k

〉
+ 3ε0η

∗
〈
d̂kĥ−k

〉
,

(7.22)
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Figure 7.1: Equilibrium properties of the hard-core doublon-holon model as ap-
proximated in Eqs. (7.21) and (7.22),for a cubic lattice with mean filling n̄ = 1.
Shown as a function of the interaction strength U/J , (a) the equilibrium conden-
sate fraction, (b) energy density.

with
〈
ĥ†−kĥ−k

〉
=
〈
d̂†kd̂k

〉
.

We numerically integrate these equations to find all quasiparticle two-point

correlation functions at any time. From these we can easily extract the correlation

functions for real particles,
〈
â†i âj

〉
and

〈
â†kâk

〉
.
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7.3 Equilibrium State

We find the equilibrium state under this model by minimizing the expectation value〈
Ĥ
〉

of the Hamiltonian of Eq. (2.40) while requiring d
dt

〈
d̂†kd̂k

〉
= d

dt

〈
d̂kĥ−k

〉
= 0.

As seen in Fig. 7.1, we find a phase transition at a critical value of Uc/J =

10.4, 21.8, 33.4 in one-, two- and three-dimensions. These are similar to the stan-

dard mean-field values of Uc/J = 11.6, 23.2, 34.8 [17, 138] and somewhat higher

than numerically calculated values Uc/J = 3.6, 16.9, 29.3 [23,24,39,46,104,150].

7.4 Interaction Ramps

We use the model above to explore the behavior of a gas subject to a non-adiabatic

ramp of the interaction through the phase transition. We perform an interaction

ramp of the form

U = Ui(Uf/Ui)
t/τr , (7.23)

where the ground state of the system is a Mott insulator for U = Ui and superfluid

for U = Uf . The time scale τr sets the speed of the ramp. This form approximates

the relation U/J obtained in an optical lattice if the inter-particle interaction

strength remains fixed while the lattice depth is reduced [75].

We initialize the system in the ground state at the initial lattice depth, in

the Mott regime, and perform a finite-element time integration of the evolution

equations as the interaction strength is reduced. We calculate the momentum

space density throughout this evolution for various values of τr. Figure 7.2 shows

the behavior for a typical ramp, with Jτr = 2. We have full access to all two-point

observables at any time along the ramp.
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Figure 7.2: Evolution of the momentum density distribution function
〈
â†kâk

〉
as

the interaction strength is slowly ramped down, U = Ui(Uf/Ui)
t/τr in a one-

dimensional lattice. Here Ui = 47J, Uf = 2J, Jτr = 2. (a) Shows the complete
evolution of the momentum density function while (b) shows snapshots of the mo-
mentum density at the beginning, middle and end of the ramp. (c) Shows the
evolution of the effective coherence length ξ (see Eq. (7.24)). (d) Shows the energy

per particle, ε = 1
Ns

〈
Ĥ
〉

, as a solid blue line, compared with the ground state

energy (red dashed line). The dashed grey grid line at t/τr ≈ 0.52 corresponds to
U(t)/J = (U/J)c.
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We first characterize the behavior of the system at the end of the ramp. We

define an effective correlation length, ξ, by comparing correlations in the system

to the form
〈
â†i âj

〉
= n̄e−|rj−ri|/ξ. We calculate ξ by fitting to the width of the

momentum distribution, as defined by the first moment, yielding

ξ

∆
= −1/ log

[
1
Ns

∑
k

εk
ε0

〈
â†kâk

〉]
. (7.24)

Though it is infinite for a superfluid system, ξ remains finite at any finite time for

a system that is not initially superfluid [29].

Figure 7.3 shows the effective correlation length at the end of the ramp for

varying ramp times. In one dimension, our calculation agrees well with the result

of an exact diagonalization of a small lattice. Our results also agree with the

experimental results of [21], up to Jτr ∼ 2. For longer ramp times, finite size

effects become significant.

1D
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0.05 0.10 0.50 1 5

0.5

1

2

5

Jτr

ξ
/Δ

Figure 7.3: Effective correlation length ξ normalized by the lattice constance ∆,
at the end of a ramp of the interaction strength of the form U = Ui(Uf/Uu)

t/τr .
Here Uf = 47J, Ui = 2J . The correlation length ξ is defined by the width of
the momentum peak (see Eq. (7.24)). The red dots are the result of an exact
diagonalization calculation for an 11-site one-dimensional lattice.

109



1D

2D

3D

0.05 0.10 0.50 1 5
0

1

2

3

4

5

6

Jτr


/J

Figure 7.4: The energy density U = 1
Ns

[〈
Ĥ
〉
−
〈
Ĥ
〉
gs

]
following an interaction

ramp of length τr. Horizontal lines show the energy density at the superfluid
critical temperature, Uc/J = 0, 2.1, 5.1 at Tc/J = 0, 1.7, 5.9 in one, two and three
dimensions [23,24].

7.5 Final Energy Density

After the ramp has ended, the system continues to evolve, and the correlation

length continues to grow. However, the energy of the system is now conserved.

At long times, we expect the state of the system to resemble a thermal state at a

temperature determined by the energy density U = 1
Ns

〈
Ĥ
〉
−
〈
Ĥ
〉
gs

, where
〈
Ĥ
〉
gs

is the energy of the new ground state of the system. We plot U in Fig. 7.4.

For ramp times much shorter than the hopping time scale, Jτr . 0.2, the final

energy density varies slowly with τr. As seen in Fig. 7.3, the correlation length ξ

at the end of the ramp does grow. However, we find that the correlation length

measured at Jt = 0.2 is similar for any τr in this range, as seen in Fig. 7.5. Thus,

ramps in this regime are indistinguishable from instantaneous quenches, and the
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final state of the system, if allowed to equilibrate, would be similar for any τr in

this regime.

A similar observation can be made for ramp times of Jτ & 2. Here, the process

is nearly adiabatic, and the system would be expected to equilibrate at a low-

temperature state if allowed.

For ramps on the order of the hopping time, Jτ ∼ 1, the final state of the

system is strongly affected by the length of the ramp. As we switch from an near-

instantaneous to near-adiabatic ramp, the energy density falls quickly with the

length of the ramp.

Jτr=0.04

Jτr=0.1

Jτr=0.2

0.00 0.05 0.10 0.15 0.20

0.1

0.2

0.3

0.4

Jt

ξ
/Δ

Figure 7.5: Evolution of the effective correlation length ξ, for an interaction

strength ramp of the form U =

{
Ui(Uf/Ui)

t/τr t ≤ τr
Uf t > τr

, with Jτr = 0.04, 0.1, 0.2

The grid lines denote the end of the ramp shorter ramps. The correlation length
continues to grow in a similar way in all cases as the system relaxes. Shown here
for a one-dimensional system with n̄ = 1.
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7.6 Decoherence

In an ideal, closed, quantum system, all evolution is unitary. The final energy of the

system rises monotonously with the rate of the ramp in such systems. Conversely,

any real system faces decoherence caused by interaction with its environment. As

a result, experimental dynamic systems always face a competition between the

system’s reaction time and external processes.

The physics of decoherence has been explored in detail [22, 118, 119, 122, 123,

134]. Here, we return to a mechanism we have previously used to described the

effect of density measurement by light scattering [161]. The same formalism de-

scribes inelastic light scattering, where an external photon scatters off of a trapped

atom. This is one of the major sources of decoherence in atomic experiments.

As in Chapter 6, we neglect out of band effects, which cause particle loss. We

focus on in-band scattering, which would directly decrease the coherence of the

remaining gas and reduce the correlation length measured above. In an ensemble

description, this leads to a nonunitary evolution term of the form

d

dt

〈
d̂†kd̂k

〉
= −i

〈[
d̂†kd̂k, Ĥ

]〉
− γ
(〈
d̂†kd̂k

〉
− nd

)
(7.25)

d

dt

〈
d̂kĥ−k

〉
= −i

〈[
d̂kĥ−k, Ĥ

]〉
− γ
〈
d̂kĥk

〉
(7.26)

where γ is proportional to the frequency of light scattering per site.

We calculate the effect of this decoherence on the behavior of the correlation

length ξ, as show in Fig. 7.6. As expected, no effect is seen at time scales shorter

than 1/γ, but at longer time scales, the decoherence dominates over the increase
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in adiabaticity. The overall effect is similar to experimental observations for long

ramp times [21].
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Figure 7.6: Effective correlation length ξ, normalized by the lattice constance ∆,
at the end of a ramp of the interaction strength of the form U = Ui(Uf/Uu)

t/τr , in
a system coupled to the environment in the form shown in Eqs. (7.25) and (7.26).
Here Uf = 47J, Ui = 2J , in a three-dimensional cubic lattice. In an optical lat-
tice setup, the rate of inelastic light scattering events changes with lattice depth
similarly to the interaction strength [75,118].

7.7 Outlook

The physics of ultracold atomic systems is driven by multiple energy scales. In

driven experimental systems, the relaxation time of the system, the driving time

scale and the rate of decoherence imposed by interaction with the environment.

Here, we have quantified the effect of the quench time in Bose-Hubbard systems

crossing the phase boundary. We find that an effectively-adiabatic transition can

be achieved by performing quenches at the hopping rate. For transitions at a

slower rate, the behavior of the system is dictated by its relaxation dynamics. We

113



have also demonstrated that inelastic light scattering can be quite destructive on

longer time scale, underscoring the usefulness of shorter experimental runs.
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APPENDIX A

GLOSSARY

The following variables are commonly used across this work. Some terms,

defined and used in specific sections, do not appear here.

a0 The lattice constant for the periodic potential

â0, â
†
0 The annihilation and creation operator, respectively, for a particle with

momentum k = 0

âi, â
†
i The annihilation and creation operator for a particle at site i (also j, etc.)

âk, â
†
k The annihilation and creation operator for a particle with momentum k

(also p, etc.)

d̂i, d̂
†
i The annihilation and creation operator for a doublone at site i (also j,

etc.); see Section 2.6.2

d̂k, d̂
†
k The annihilation and creation operator for a particle with momentum k

(also p, etc.); see Section 2.6.2

∆,∆ A basis vector for the periodic potential, and its length, ∆ = |∆|
εk The single-particle kinetic energy on the lattice, εk = −2

∑
∆ cos(∆ · k)

εk The relative kinetic energy, εk = εk − ε0 = 4
∑

∆ sin2(∆ · k/2)

γ The rate constant for inelastic light scattering off the bosons, induced for
measurement or by an imperfect environment.

ĥi, ĥ
†
i The annihilation and creation operator for a particle at site i (also j, etc.);

see Section 2.6.2

ĥk, ĥ
†
k The annihilation and creation operator for a particle with momentum k

(also p, etc.); see Section 2.6.2

J The hopping parameter for the Bose-Hubbard model; see Eq. (2.8)

µ The chemical potential

n̄ The mean number of particles per site on the lattice

n̂i The real-space number density operator, n̂i = â†i âi (also j, etc.)

n̂k The momentum space number density operator, n̂k = â†kâk (also p, etc.)

Ns The number of sites in the lattice, generally going to infinity Ns � 1

Ri The position of the i-th lattice site (also j, etc.)

U The interaction strength for the Bose-Hubbard model; see Eq. (2.8)
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APPENDIX B

NOBODY REALLY GETS QUANTUM

On Yom Kippur eve Quantum walked over to Einstein’s house to seek forgive-

ness. “I’m not here,” yelled Einstein through a closed door. On the way home

everybody taunted him and somebody even hit him with an empty can of coke.

Quantum pretended not to care, but deep inside he was really hurt. Nobody re-

ally gets Quantum, everybody hates him. “Parasite!” people cry out when he’s

walking down the street, “draft dodger!” - “I wanted to enlist,” Quantum tries

to say, “but they wouldn’t take me, because I’m so small.” Not that anybody

listens to Quantum. Nobody listens to Quantum when he tries to speak up for

himself, but when he says something that can be misconstrued, oh, then suddenly

everybody’s paying attention. Quantum can say something innocuous like “wow,

what a cat!” and right away some reporter calls it a provocation and runs off to

talk to Schrödinger. And anyway, the media hates Quantum most, because once,

in an interview in Scientific American, Quantum said that the observer affects the

observed event, and all the journalists thought he was talking about the coverage

of the war and said he was deliberately inciting violence. And Quantum can keep

talking all day about how he didn’t mean it and he has no political agenda, nobody

believes him anyway. Everybody knows he’s friends with Yuval Ne’eman1.

A lot of people think Quantum is cold, that he has no feelings, but that’s not

true at all. On Friday, after a documentary about Hiroshima, he was one of the

experts on the discussion panel. And he couldn’t even speak. Just sat in front

of the open mic and cried, and all of the viewers at home, that don’t really know

Quantum, couldn’t understand that Quantum was crying, they just thought he

1Physicists know Ne’eman through his work with Gell-Mann on particle physics, but in Israel
he was also known as an opponent of reconciliation with the Palestinians in the 80’s and 90’s
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was avoiding the question. And the sad thing about it is, even if Quantum writes

dozens of letters to the editors of all the scientific journals in the world and proves

beyond any doubt that for the whole atomic bomb thing he was just being used

and he never thought it would end this way, it wouldn’t help him, because nobody

really gets quantum. Least of all the physicists.

Etgar Keret [81]; translated by YY
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[89] C. Kollath, A. M. Läuchli, and E. Altman. Quench dynamics and nonequi-

125



librium phase diagram of the Bose-Hubbard model. Physical Review Letters,
98(18):180601, 2007.

[90] W. Krauth, M. Caffarel, and J. P. Bouchaud. Gutzwiller wave function for a
model of strongly interacting bosons. Physical Review B, 45(6):3137, 1992.

[91] W. Krauth, N. Trivedi, and D. M. Ceperley. Superfluid-Insulator Transition
in Disordered Boson Systems. Physical review letters, 67(17):2307, 1991.

[92] A. B. Kuklov, N. V. Prokofev, and B. V. Svistunov. Superfluid-Superfluid
Phase Transitions in a Two-Component Bose-Einstein Condensate. Physical
Review Letters, 92(3):030403, Jan. 2004.

[93] A. B. Kuklov and B. V. Svistunov. Counterflow superfluidity of two-species
ultracold atoms in a commensurate optical lattice. Physical Review Letters,
90(10):100401, 2003.

[94] L. D. Landau. The theory of superfluidity of helium II. J. Phys. USSR,
5(71), 1941.

[95] J. S. Langer. Coherent States in the Theory of Superfluidity. Physical Review,
167(1):183, 1968.

[96] P. A. Lee, N. Nagaosa, and X.-G. Wen. Doping a Mott Insulator: Physics of
High Temperature Superconductivity. Reviews of Modern Physics, 78(1):17,
2006.

[97] A. J. Leggett. On the Superfluid Fraction of an Arbitrary Many-Body System
at T=0. Journal of Statistical Physics, 93(3/4):927–941, Nov. 1998.

[98] A. J. Leggett. Superfluidity. Reviews of Modern Physics, 71(2):S318–S323,
1999.

[99] A. J. Leggett. Bose-Einstein condensation in the alkali gases: Some funda-
mental concepts. Reviews of Modern Physics, 73(April):307–356, 2001.

[100] C. Lobo, A. Recati, S. Giorgini, and S. Stringari. Normal State of a Polarized
Fermi Gas at Unitarity. Physical Review Letters, 97(20):200403, Nov. 2006.

[101] I. B. Mekhov and H. Ritsch. Quantum optics with ultracold quantum gases:
towards the full quantum regime of the lightmatter interaction. Journal of
Physics B: Atomic, Molecular and Optical Physics, 45(10):102001, May 2012.

126



[102] J. J. Mendoza-Arenas, T. Grujic, D. Jaksch, and S. R. Clark. Dephasing
enhanced transport in nonequilibrium strongly correlated quantum systems.
Physical Review B, 87(23):235130, June 2013.

[103] D. N. Mermin and N. W. Ashcroft. Solid State Physics. Saunders, Philadel-
phia, 1976.

[104] H. Monien and T. D. Kühner. Phases of the one-dimensional Bose-Hubbard
model. Physical Review B, 58(22):741–744, 1998.

[105] Y. Nagaoka. Ferromagnetism in a narrow, almost half-filled s band. Physical
Review, 147(1):392–405, 1966.

[106] A. Naik, O. Buu, M. D. LaHaye, A. D. Armour, A. Clerk, M. P. Blencowe,
and K. C. Schwab. Cooling a nanomechanical resonator with quantum back-
action. Nature, 443(7108):193–196, Sept. 2006.

[107] R. Nandkishore and D. a. Huse. Many-Body Localization and Thermalization
in Quantum Statistical Mechanics. Annual Review of Condensed Matter
Physics, 6(1):15–38, 2015.

[108] S. S. Natu, D. C. McKay, B. DeMarco, and E. J. Mueller. Evolution of con-
densate fraction during rapid lattice ramps. Physical Review A, 85(6):061601,
June 2012.

[109] S. S. Natu and E. J. Mueller. Pairing, ferromagnetism, and condensation of
a normal spin-1 Bose gas. Physical Review A, 84:053625, 2011.
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